谷歌 DeepMind 联合斯坦福推出了主从式遥操作双臂机器人系统增强版ALOHA 2

谷歌 DeepMind 联合斯坦福推出了 ALOHA 的增强版本 ------ALOHA 2。与一代相比,ALOHA 2 具有更强的性能、人体工程学设计和稳健性,且成本还不到 20 万元人民币。并且,为了加速大规模双手操作的研究,ALOHA 2 相关的所有硬件设计全部开源了,并提供了详细的教程,以及具有系统识别功能的 ALOHA 2 MuJoCo 模型。谷歌 DeepMind 放出了相关论文《ALOHA 2: An Enhanced Low-Cost Hardware for Bimanual Teleoperation》。

论文地址:https://aloha-2.github.io/assets/aloha2.pdf

项目主页:https://aloha-2.github.io/

我们先来一睹升级后的 ALOHA 2 能做些什么,比如将不同的玩具放进三个不同的碗里。

玩杂耍,你扔我接。

开可乐瓶并将可乐倒进别的杯子里、开酸奶盒。

给熊猫玩偶戴上美瞳。

更难以想象的是,它还能变身扒手,悄无声息拿走你的钱包,并给你放回去。

简直绝了!ALOHA 2 显著提高了一代 ALOHA 的耐用性,从而能够在更复杂的任务上进行大规模数据收集。

相较于一代,ALOHA 2 都升级了些啥

为支持对复杂操作任务的研究,在 ALOHA 平台上扩大数据收集的规模成为目标之一,包括使用的机器人数量、每台机器人的数据收集小时数以及数据收集的多样性。这一扩展过程改变了相对于第一代 ALOHA 平台的要求和范围。

对于 ALOHA 2,除了在 ALOHA 平台的基础上建设,研究者还针对以下领域寻求进一步改进:

性能和任务范围:增强 ALOHA 性能的关键组件,包括夹持器和控制器,以实现更广泛的操控任务。

用户友好性和人体工学:为了优化大规模数据收集,优先考虑用户体验和舒适度,包括改进用户界面系统的响应性和人体工学设计。

稳健性:增加系统的稳健性,最大限度地减少因诊断和维修造成的停机时间。这就需要简化机械设计,并确保更大规模的机器人队伍在整体上易于维护。

根据上述目标,ALOHA 2 的具体改进如下:

夹持器:研究者为主/从机器人的夹持器设计了新的低摩擦轨道。对于主机器人,这改善了遥操作的人体工学和响应速度。对于随动机器人,这改善了延迟和夹持器的力量输出。此外,他们还升级了手指上的抓胶带材料,以提高耐用性和抓取小物体的能力。

重力补偿:研究者使用现成的组件创建了一个被动的重力补偿机制,与 ALOHA 原有的抓带材料系统相比,这提高了耐用性。

框架:研究者简化了围绕工作单元的框架,同时保持了相机安装点的刚性。这些变化为人机协作者和机器人互动的道具提供了空间。

相机:ALOHA 2 使用更小的英特尔 RealSense D405 相机和定制的 3D 打印相机支架,以减小跟随臂的占地面积,从而减少对操作任务的阻碍。这些摄像头还具有更大的视场角、深度、全局快门和更多的定制功能。

模拟:研究者在 MuJoCo Menagerie 中的 MuJoCo 模型中模拟了 ALOHA 2 机器人的精确规格,从而改进了数据收集、策略学习和模拟评估,以应对具有挑战性的操纵任务。

夹持器

为了使遥控操作更顺畅,并改善人体工程学,本次采用了低摩擦轨道设计,降低了机械复杂性,从而取代了 ALOHA 原有的剪刀导轨式机械手设计。

研究者设计并制造了低摩擦随动机械手,取代了 ALOHA 最初的设计。较低的摩擦减少了领导机器人和跟随机器人夹持器之间感知的延迟,显著改善了远程操作期间的用户体验。

框架

研究者重新设计了支撑框架,并使用 20x20mm 铝型材将其制成。框架为领导机器人和重力补偿系统提供支撑,并为俯视摄像机和虫眼摄像机提供安装点。

与 ALOHA 相比,本次设计进行了简化,去掉了工作台与遥控操作员相对一侧的垂直框架。增加的空间使数据收集方式更加多样化。例如,人类协作者可以更轻松地站在工作区的对面与机器人互动,从而收集人机互动数据。此外,还可以在工作台前摆放较大的道具,让机器人与之互动。

模拟

研究者发布了用于 ALOHA 2 工作单元的 MuJoCo Menagerie 模型,它对于远程操作和模拟学习非常有用。

与之前发布的 ALOHA 模型相比,MuJoCo 的物理精度更高、视觉保真度更高,允许快速、直观、可扩展的模拟数据收集。

MuJoCo 模型渲染。

模拟远程操作任务。

以下为使用 Google Scanned Objects Dataset 与 MuJoCo 模型进行远程操作的示例(1 倍速度):

相关推荐
CES_Asia几秒前
2026科技热点预言:CES Asia“具身智能”展区已成产业风向标
大数据·人工智能·科技·机器人
core5129 分钟前
神经网络 (Neural Networks):模仿大脑的超级机器
人工智能·深度学习·神经网络
GitCode官方10 分钟前
Qwen-Image-Edit-2509 正式上线 AtomGit AI:重新定义 AI 图像编辑体验!
人工智能·计算机视觉·atomgit
SCBAiotAigc14 分钟前
Chrome的cookie编辑插件EditThisCookie
人工智能·chrome·python·ubuntu
啊阿狸不会拉杆15 分钟前
《数字图像处理》实验6-图像分割方法
图像处理·人工智能·算法·计算机视觉·数字图像处理
不惑_17 分钟前
通俗理解什么是神经网络
人工智能·深度学习·神经网络
愚公搬代码18 分钟前
【愚公系列】《扣子开发 AI Agent 智能体应用》014-基于大模型的企业知识库(知识库的理论基础 RAG)
人工智能
Nwiliuyw20 分钟前
Isaac Gym的WARNING: Forcing cpu pipeline. GPU pipeline disabled无法启用问题可能是个幌子骗了你
人工智能·经验分享·学习
GAOJ_K21 分钟前
旋转花键如何保障精密设备长期运行高精度?
人工智能·科技·自动化·制造
神算大模型APi--天枢64622 分钟前
合规落地加速期,大模型后端开发与部署的实战指南
大数据·前端·人工智能·架构·硬件架构