机器学习:Softmax介绍及代码实现

Softmax原理

Softmax函数用于将分类结果归一化,形成一个概率分布。作用类似于二分类中的Sigmoid函数。

对于一个k维向量z,我们想把这个结果转换为一个k个类别的概率分布p(z)。softmax可以用于实现上述结果,具体计算公式为:

对于k维向量z来说,其中zi∈Rzi∈R,我们使用指数函数变换可以将元素的取值范围变换到(0,+∞)(0,+∞),之后我们再所有元素求和将结果缩放到[0,1],形成概率分布。

常见的其他归一化方法,如max-min、z-score方法并不能保证各个元素为正,且和为1。

Softmax性质


输入向量x加上一个常数c后求softmax结算结果不变,即:

我们使用softmax(x)的第i个元素的计算来进行证明:

函数实现

由于指数函数的放大作用过于明显,如果直接使用softmax计算公式
进行函数实现,容易导致数据溢出(上溢)
。所以我们在函数实现时利用其性质:先对输入数据进行处理,之后再利用计算公式计算。具体使得实现步骤为:

  1. 查找每个向量x的最大值c;
  2. ++每个向量减去其最大值c++, 得到向量y = x-c;
  3. 利用公式进行计算 s o f t m a x ( x ) = s o f t m a x ( x − c ) = s o f t m a x ( y ) softmax(x) = softmax(x-c) = softmax(y) softmax(x)=softmax(x−c)=softmax(y)
python 复制代码
import numpy as np
def softmax(x, axim=1):
    '''
    x: m*n m个样本,n个分类输出
    return s:m*n
    '''
    row_max = np.max(x, axis=axis) # 计算最大值
    row_max = row_max.reshape(-1, 1) # 将数据展开为m*1的形状,方便使用广播进行作差
    x = x - row_max # 减去最大值
    x_exp = np.exp(x) # 求exp
    s = x_exp / np.sum(x_exp, axis=axis, keepdim=True) # 求softmax
    return s
相关推荐
xiao5kou4chang6kai47 分钟前
Python-GEE遥感云大数据分析与可视化(如何建立基于云计算的森林监测预警系统)
python·数据分析·云计算·森林监测·森林管理
铭keny13 分钟前
YOLO11 目标检测从安装到实战
人工智能·目标检测·目标跟踪
presenttttt14 分钟前
用Python和OpenCV从零搭建一个完整的双目视觉系统(四)
开发语言·python·opencv·计算机视觉
木头左3 小时前
逻辑回归的Python实现与优化
python·算法·逻辑回归
quant_19864 小时前
R语言如何接入实时行情接口
开发语言·经验分享·笔记·python·websocket·金融·r语言
小牛头#5 小时前
clickhouse 各个引擎适用的场景
大数据·clickhouse·机器学习
杨小扩6 小时前
第4章:实战项目一 打造你的第一个AI知识库问答机器人 (RAG)
人工智能·机器人
whaosoft-1436 小时前
51c~目标检测~合集4
人工智能
雪兽软件6 小时前
2025 年网络安全与人工智能发展趋势
人工智能·安全·web安全
元宇宙时间7 小时前
全球发展币GDEV:从中国出发,走向全球的数字发展合作蓝图
大数据·人工智能·去中心化·区块链