机器学习:Softmax介绍及代码实现

Softmax原理

Softmax函数用于将分类结果归一化,形成一个概率分布。作用类似于二分类中的Sigmoid函数。

对于一个k维向量z,我们想把这个结果转换为一个k个类别的概率分布p(z)。softmax可以用于实现上述结果,具体计算公式为:

对于k维向量z来说,其中zi∈Rzi∈R,我们使用指数函数变换可以将元素的取值范围变换到(0,+∞)(0,+∞),之后我们再所有元素求和将结果缩放到[0,1],形成概率分布。

常见的其他归一化方法,如max-min、z-score方法并不能保证各个元素为正,且和为1。

Softmax性质


输入向量x加上一个常数c后求softmax结算结果不变,即:

我们使用softmax(x)的第i个元素的计算来进行证明:

函数实现

由于指数函数的放大作用过于明显,如果直接使用softmax计算公式
进行函数实现,容易导致数据溢出(上溢)
。所以我们在函数实现时利用其性质:先对输入数据进行处理,之后再利用计算公式计算。具体使得实现步骤为:

  1. 查找每个向量x的最大值c;
  2. ++每个向量减去其最大值c++, 得到向量y = x-c;
  3. 利用公式进行计算 s o f t m a x ( x ) = s o f t m a x ( x − c ) = s o f t m a x ( y ) softmax(x) = softmax(x-c) = softmax(y) softmax(x)=softmax(x−c)=softmax(y)
python 复制代码
import numpy as np
def softmax(x, axim=1):
    '''
    x: m*n m个样本,n个分类输出
    return s:m*n
    '''
    row_max = np.max(x, axis=axis) # 计算最大值
    row_max = row_max.reshape(-1, 1) # 将数据展开为m*1的形状,方便使用广播进行作差
    x = x - row_max # 减去最大值
    x_exp = np.exp(x) # 求exp
    s = x_exp / np.sum(x_exp, axis=axis, keepdim=True) # 求softmax
    return s
相关推荐
小王毕业啦3 分钟前
1999-2023年 地级市-数字经济综合发展指数
大数据·人工智能·数据挖掘·数据分析·数据统计·社科数据·实证数据
ZhengEnCi5 分钟前
P3H0-Python-os模块完全指南-操作系统接口与文件路径处理利器
python·操作系统
红尘炼丹客6 分钟前
简析金融领域的“量化”和“量化交易”
人工智能·金融
草莓熊Lotso8 分钟前
Git 本地操作进阶:版本回退、撤销修改与文件删除全攻略
java·javascript·c++·人工智能·git·python·网络协议
Mintopia10 分钟前
🌟 Gemini 3.0 Pro:Google 的「多模态巨灵」新篇章
人工智能·gemini·trae
Mintopia14 分钟前
🌐 跨平台 WebAIGC 适配:当 AI 遇上屏幕尺寸差异的爱恨情仇
人工智能·aigc·trae
想看一次满天星19 分钟前
阿里140-语雀逆向分析
javascript·爬虫·python·语雀·阿里140
LO嘉嘉VE36 分钟前
学习笔记十七:神经网络基础概念
笔记·神经网络·学习·机器学习
天地之于壹炁兮36 分钟前
用VSCode打造高效AI开发环境:从配置到实战
ide·人工智能·vscode
孤狼warrior41 分钟前
我想拥有作家的思想 循环神经网络及变型
人工智能·rnn·深度学习·神经网络·lstm