机器学习:Softmax介绍及代码实现

Softmax原理

Softmax函数用于将分类结果归一化,形成一个概率分布。作用类似于二分类中的Sigmoid函数。

对于一个k维向量z,我们想把这个结果转换为一个k个类别的概率分布p(z)。softmax可以用于实现上述结果,具体计算公式为:

对于k维向量z来说,其中zi∈Rzi∈R,我们使用指数函数变换可以将元素的取值范围变换到(0,+∞)(0,+∞),之后我们再所有元素求和将结果缩放到[0,1],形成概率分布。

常见的其他归一化方法,如max-min、z-score方法并不能保证各个元素为正,且和为1。

Softmax性质


输入向量x加上一个常数c后求softmax结算结果不变,即:

我们使用softmax(x)的第i个元素的计算来进行证明:

函数实现

由于指数函数的放大作用过于明显,如果直接使用softmax计算公式
进行函数实现,容易导致数据溢出(上溢)
。所以我们在函数实现时利用其性质:先对输入数据进行处理,之后再利用计算公式计算。具体使得实现步骤为:

  1. 查找每个向量x的最大值c;
  2. ++每个向量减去其最大值c++, 得到向量y = x-c;
  3. 利用公式进行计算 s o f t m a x ( x ) = s o f t m a x ( x − c ) = s o f t m a x ( y ) softmax(x) = softmax(x-c) = softmax(y) softmax(x)=softmax(x−c)=softmax(y)
python 复制代码
import numpy as np
def softmax(x, axim=1):
    '''
    x: m*n m个样本,n个分类输出
    return s:m*n
    '''
    row_max = np.max(x, axis=axis) # 计算最大值
    row_max = row_max.reshape(-1, 1) # 将数据展开为m*1的形状,方便使用广播进行作差
    x = x - row_max # 减去最大值
    x_exp = np.exp(x) # 求exp
    s = x_exp / np.sum(x_exp, axis=axis, keepdim=True) # 求softmax
    return s
相关推荐
【建模先锋】20 小时前
基于Python的智能故障诊断系统 | SmartDiag AI (基础版)V1.0 正式发布!
开发语言·人工智能·python·故障诊断·智能分析平台·大数据分析平台·智能故障诊断系统
简鹿办公20 小时前
Opera 全线浏览器接入 Google Gemini,AI 上网体验全面升级
人工智能·google gemini·opera neon
AIsdhuang20 小时前
2025 年企业 AI 培训精选指南:聚焦企业培训场景
人工智能·python
Léon's Blog20 小时前
torch常见操作
人工智能
梵得儿SHI20 小时前
AI Agent 性能优化与成本控制:从技术突破到行业落地实战指南
人工智能·性能优化·智能路由·aiagent落地实践·成本控制和稳定性保障·提示词压缩·模型运行慢
IT·陈寒20 小时前
小智 AI 智能音箱 MCP 开发实战:从环境搭建到自定义语音技能完整指南
人工智能·语音识别·智能音箱
今天没有盐20 小时前
Python 数据分析实战:多场景数据处理与可视化全解析
python·pycharm·编程语言
这张生成的图像能检测吗20 小时前
(论文速读)一种基于双目视觉的机器人螺纹装配预对准姿态估计方法
人工智能·计算机视觉·机器人·手眼标定·位姿估计·双目视觉·螺纹装配
TextIn智能文档云平台20 小时前
图片表格怎么转换成Markdown格式
人工智能·文档处理
zhaodiandiandian20 小时前
I浪潮下的就业重构:挑战、机遇与转型
人工智能·重构