代码随想录算法训练营day53 || 121.买卖股票的最佳时机,122.买卖股票的最佳时机||

视频讲解:

动态规划之 LeetCode:121.买卖股票的最佳时机1_哔哩哔哩_bilibili

动态规划,股票问题第二弹 | LeetCode:122.买卖股票的最佳时机II_哔哩哔哩_bilibili

121.买卖股票的最佳时机

思路:寻找全局最大间隔,对于不满足后大前小的地方,直接继承前一位置的状态。

java 复制代码
// 时间复杂度O(n)
// 空间复杂度O(n)

class Solution {
    public int maxProfit(int[] prices) {
        // 思路就是保存全局最大的间隔,但这个间隔是由i位置之后的内容所创造的
        if(prices.length == 0 || prices == null)
            return 0;
        int n = prices.length;
        // dp数组的含义是前i+1天所能取得的最大收益
        int[] dp = new int[n];
        int in = 0; //购入股票的下标
        dp[0] = 0;
        for(int i=1; i<n; i++){
            if(prices[i] < prices[in]){
                in = i;
                dp[i] = dp[i-1];    // 本来此处应该是赋值为0,表示此处为新购入
            }
            else
                dp[i] = Math.max(dp[i-1], prices[i]-prices[in]);
        }

        return dp[n-1];
    }
}

122. 买卖股票的最佳时机||

思路:二维dp在递推公式上与 买卖股票的最佳时机I 有这不同,是dp[i-1][0]-prices[i]替代-prices[i]这个过程, 其实本质就是-prices[i]表示的dp[i-1][0]总是零,即模拟出了总是第一次买入,而没有其他买入所带来的收益。而去两题针对dp[i][1]取max都是喜欢买的价格尽可能的小或者减少利润的消耗。

java 复制代码
// 时间复杂度O(n)
// 空间复杂度O(n)和O(2n)

class Solution {
    public int maxProfit(int[] prices) {
        // 使用贪心策略
        // int benefit = 0;
        // for(int i=0; i<prices.length; i++){
        //     if(i+1<prices.length && prices[i+1] > prices[i])
        //         benefit += prices[i+1]-prices[i];
        // }

        // return benefit;

        // 使用动态规划策略
        int n=prices.length;
        int[][] dp = new int[n][2];
        // dp[i][0] 表示不持有股票的最大收益
        // dp[i][1] 表示持有股票的最大收益 
        dp[0][0] = 0;
        dp[0][1] = -prices[0];  // 由于可以多次买入,所以这里可以直接赋值为-prices[0]
        for(int i=1; i<n; i++){
            dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1]+prices[i]);
            dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0]-prices[i]);
        }

        return dp[n-1][0];


// 时间复杂度O(n)
// 空间复杂度O(2n)

        // 使用动态规划策略
        int n=prices.length;
        int[][] dp = new int[n][2];
        // dp[i][0] 表示不持有股票的最大收益
        // dp[i][1] 表示持有股票的最大收益 
        dp[0][0] = 0;
        dp[0][1] = -prices[0];  // 由于可以多次买入,所以这里可以直接赋值为-prices[0]
        for(int i=1; i<n; i++){
            dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1]+prices[i]);
            dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0]-prices[i]);
        }

        return dp[n-1][0];
    }
}
相关推荐
蒋星熠2 小时前
Flutter跨平台工程实践与原理透视:从渲染引擎到高质产物
开发语言·python·算法·flutter·设计模式·性能优化·硬件工程
小欣加油2 小时前
leetcode 面试题01.02判定是否互为字符重排
数据结构·c++·算法·leetcode·职场和发展
3Cloudream3 小时前
LeetCode 003. 无重复字符的最长子串 - 滑动窗口与哈希表详解
算法·leetcode·字符串·双指针·滑动窗口·哈希表·中等
王璐WL3 小时前
【c++】c++第一课:命名空间
数据结构·c++·算法
空白到白3 小时前
机器学习-聚类
人工智能·算法·机器学习·聚类
索迪迈科技3 小时前
java后端工程师进修ing(研一版 || day40)
java·开发语言·学习·算法
zzzsde4 小时前
【数据结构】队列
数据结构·算法
芒克芒克4 小时前
LeetCode 面试经典 150 题:删除有序数组中的重复项(双指针思想解法详解)
算法
青 .4 小时前
数据结构---二叉搜索树的实现
c语言·网络·数据结构·算法·链表
MChine慕青5 小时前
顺序表与单链表:核心原理与实战应用
linux·c语言·开发语言·数据结构·c++·算法·链表