PyTorch – 逻辑回归

data

首先导入torch里面专门做图形处理的一个库,torchvision,根据官方安装指南,你在安装pytorch的时候torchvision也会安装。

我们需要使用的是torchvision.transforms和torchvision.datasets以及torch.utils.data.DataLoader

首先DataLoader是导入图片的操作,里面有一些参数,比如batch_size和shuffle等,默认load进去的图片类型是PIL.Image.open的类型,如果你不知道PIL,简单来说就是一种读取图片的库

torchvision.transforms里面的操作是对导入的图片做处理,比如可以随机取(50, 50)这样的窗框大小,或者随机翻转,或者去中间的(50, 50)的窗框大小部分等等,但是里面必须要用的是transforms.ToTensor(),这可以将PIL的图片类型转换成tensor,这样pytorch才可以对其做处理

torchvision.datasets里面有很多数据类型,里面有官网处理好的数据,比如我们要使用的MNIST数据集,可以通过torchvision.datasets.MNIST()来得到,还有一个常使用的是torchvision.datasets.ImageFolder(),这个可以让我们按文件夹来取图片,和keras里面的flow_from_directory()类似,具体的可以去看看官方文档的介绍。

|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | # 定义超参数 batch_size = 32 learning_rate = 1e-3 num_epoches = 100 # 下载训练集 MNIST 手写数字训练集 train_dataset = datasets.MNIST(root=\'./data\', train=True, transform=transforms.ToTensor(), download=True) test_dataset = datasets.MNIST(root=\'./data\', train=False, transform=transforms.ToTensor()) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) |

以上就是我们对图片数据的读取操作

model

之前讲过模型定义的框架,废话不多说,直接上代码

|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 2 3 4 5 6 7 8 9 10 | class Logstic_Regression(nn.Module): def init(self, in_dim, n_class): super(Logstic_Regression, self).init() self.logstic = nn.Linear(in_dim, n_class) def forward(self, x): out = self.logstic(x) return out model = Logstic_Regression(28*28, 10) # 图片大小是28x28 |

我们需要向这个模型传入参数,第一个参数定义为数据的维度,第二维数是我们分类的数目。

接着我们可以在gpu上跑模型,怎么做呢?

首先可以判断一下你是否能在gpu上跑

|---|--------------------------|
| 1 | torh.cuda.is_available() |

如果返回True就说明有gpu支持

接着你只需要一个简单的命令就可以了

|-----------|--------------------------------------|
| 1 2 3 4 5 | model = model.cuda() 或者 model.cuda() |

然后需要定义loss和optimizer

|-----|-----------------------------------------------------------------------------------------------|
| 1 2 | criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=learning_rate) |

这里我们使用的loss是交叉熵,是一种处理分类问题的loss,optimizer我们还是使用随机梯度下降

train

接着就可以开始训练了

|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | for epoch in range(num_epoches): print(\'epoch {}\'.format(epoch 1)) print(\'*\'*10) running_loss = 0.0 running_acc = 0.0 for i, data in enumerate(train_loader, 1): img, label = data img = img.view(img.size(0), -1) # 将图片展开成 28x28 if use_gpu: img = Variable(img).cuda() label = Variable(label).cuda() else: img = Variable(img) label = Variable(label) # 向前传播 out = model(img) loss = criterion(out, label) running_loss = loss.data[0] * label.size(0) _, pred = torch.max(out, 1) num_correct = (pred == label).sum() running_acc = num_correct.data[0] # 向后传播 optimizer.zero_grad() loss.backward() optimizer.step() |

注意我们如果将模型放到了gpu上,相应的我们的Variable也要放到gpu上,也很简单

|-----|-----------------------------------------------------------|
| 1 2 | img = Variable(img).cuda() label = Variable(label).cuda() |

然后可以测试模型,过程与训练类似,只是注意要将模型改成测试模式

|---|--------------|
| 1 | model.eval() |

这是跑完100 epoch的结果

具体的结果多久打印一次,如何打印可以自己在for循环里面去设计。

相关代码:pytorch-beginner: pytorch-beginner

相关推荐
李昊哲小课1 分钟前
pandas销售数据分析
人工智能·python·数据挖掘·数据分析·pandas
whabc10044 分钟前
和鲸社区深度学习基础训练营2025年关卡2(2)sklearn中的MLPClassifier
人工智能·深度学习·numpy
往日情怀酿做酒 V17639296381 小时前
pytorch的介绍以及张量的创建
人工智能·pytorch·python
北辰alk1 小时前
如何实现AI多轮对话功能及解决对话记忆持久化问题
人工智能
智驱力人工智能1 小时前
极端高温下的智慧出行:危险检测与救援
人工智能·算法·安全·行为识别·智能巡航·高温预警·高温监测
Leo.yuan1 小时前
数据分析师如何构建自己的底层逻辑?
大数据·数据仓库·人工智能·数据挖掘·数据分析
笑稀了的野生俊2 小时前
ImportError: /lib/x86_64-linux-gnu/libc.so.6: version GLIBC_2.32‘ not found
linux·人工智能·ubuntu·大模型·glibc·flash-attn
吕永强2 小时前
意识边界的算法战争—脑机接口技术重构人类认知的颠覆性挑战
人工智能·科普
二二孚日2 小时前
自用华为ICT云赛道AI第三章知识点-昇腾芯片硬件架构,昇腾芯片软件架构
人工智能·华为
蹦蹦跳跳真可爱5893 小时前
Python----OpenCV(几何变换--图像平移、图像旋转、放射变换、图像缩放、透视变换)
开发语言·人工智能·python·opencv·计算机视觉