动态规划初识心得

今天开始了动态规划算法,经过三道题的洗礼,再加上文档的帮助,我找到了规律(只是从这三道题,并不一定适合所有动态规划)。

比如:509.斐波那契数:对于这道题,一定是要从前向后计算,因为题目中给出的时h[0]=0和h[1]=1,这也相当于知道了规律的前两项,根据题目可以得到h[2]=h[1]+h[0],推导出递推公式h[x]=h[x-1]+h[x-2]。我们需要一个数组

来保存每次计算出的结果,因此可以这么写:

javascript 复制代码
var fib = function (n) {
            let arr = []//设置数组保存每次计算出的结果
            arr[0] = 0, arr[1] = 1//递推公式通过数组实现
            if (n === 0 || n === 1) return n
            for (let i = 2; i <= n; i++) {
                arr[i] = arr[i - 1] + arr[i - 2]
            }
            return arr[arr.length - 1]//返回数组的最后一个元素,
        };
  1. 爬楼梯 :这道题没有明说规律,但是我们可以通过自己的计算来得到。当台阶总数为0,方法只有0种,即h[0]=0;当台阶数为1时,方法有[1]一种,即h[1]=1;当台阶数为2时,方法有[[1,1],[2]]两种,即h[2]=2;当台阶数为3时,方法有[[1,1,1],[1,2],[2,1]]三种,即h[3]=3。由此可以看出这道题的递推公式也是h[x]=h[x-1]+h[x-2]。所以代码与上一道题相同。
  2. 使用最小花费爬楼梯 :这道题相对前两道是比较难的,因为这对找递推公式前两项是非常困难的。但是我们可以想一下,要找到到每一台阶的花费,即需要前一层跳到该层的费用以及跳到前一层的最低花费。写成递推公式就是h[n]=Math.min(h[n-1]+cost[n-1],h[n-2]+cost[n-2])。解释一下:因为每一次可以跳一层或者两层,所以第n层的花费就是前一层跳跃的花费加上跳到前一层的最低花费之和以及前两层跳跃的花费加上跳到前两层的最低花费之和的最小值。代码如下:
javascript 复制代码
        var minCostClimbingStairs = function (cost) {
            let arr = []
            arr[0] = 0, arr[1] = 0//根据上面的递推公式求出数组的前两项
            if (cost.length === 1 || cost.length === 0) return 0
            for (let i = 2; i <= cost.length; i++) {
                arr[i] = Math.min(arr[i - 1] + cost[i - 1], arr[i - 2] + cost[i - 2])
            }
            return arr[arr.length - 1]
        };

以上三道题都是符合开头所说的规则。

相关推荐
LYFlied9 分钟前
【每日算法】LeetCode 17. 电话号码的字母组合
前端·算法·leetcode·面试·职场和发展
式51635 分钟前
线性代数(八)非齐次方程组的解的结构
线性代数·算法·机器学习
橘颂TA1 小时前
【剑斩OFFER】算法的暴力美学——翻转对
算法·排序算法·结构与算法
叠叠乐2 小时前
robot_state_publisher 参数
java·前端·算法
hweiyu002 小时前
排序算法:冒泡排序
算法·排序算法
brave and determined2 小时前
CANN训练营 学习(day9)昇腾AscendC算子开发实战:从零到性能冠军
人工智能·算法·机器学习·ai·开发环境·算子开发·昇腾ai
Dave.B2 小时前
用【vtk3DLinearGridCrinkleExtractor】快速提取3D网格相交面
算法·3d·vtk
yaoh.wang3 小时前
力扣(LeetCode) 1: 两数之和 - 解法思路
python·程序人生·算法·leetcode·面试·跳槽·哈希算法
Code Slacker3 小时前
LeetCode Hot100 —— 滑动窗口(面试纯背版)(四)
数据结构·c++·算法·leetcode
brave and determined3 小时前
CANN训练营 学习(day8)昇腾大模型推理调优实战指南
人工智能·算法·机器学习·ai实战·昇腾ai·ai推理·实战记录