使用R语言glmnet包进行正则化lasso回归

正则化的原理是尽可能多的将数据中的特征塞进最终模型,特征越多越可以更好地解释数据集的错综复杂。在应用正则化后,每个特征对模型部分的解释程度可能完全不同。通过使用正则化可以减少数据集的噪声,这些噪声可能来对最终模型几乎没有形象的特征。为了利用这种正则化技术,可以调用特定类型的回归模型,称为套索回归(lasso regression),此处使用的R语言自带的数据集mtcars数据集。

原书(Introduction to Machine Learning with R)使用的是lasso2包的l1ce()函数,此包已弃用,采用从历史文档手动安装的方式无法与现在的R版本匹配,故改用glmnet包的cv.glmnet函数。

R 复制代码
library(glmnet)  

# 选择特征和设置响应变量
#可改成(mpg ~ wy + cyl)
x <- model.matrix(mpg ~ ., data = mtcars)[, -1]
y <- mtcars$mpg

# 执行Lasso交叉验证
cv_fit <- cv.glmnet(x, y, alpha = 1)  
# 根据最小MSE选择lambda值
optimal_lambda <- cv_fit$lambda.min  
# 拟合最终Lasso模型  
lasso_model <- glmnet(x, y, alpha = 1, lambda = optimal_lambda)  

print(coef(lasso_model)) 
print(cv_fit)

输出:

R 复制代码
11 x 1 sparse Matrix of class "dgCMatrix"
                     s0
(Intercept) 36.44441107
cyl         -0.89269853
disp         .         
hp          -0.01282277
drat         .         
wt          -2.78337592
qsec         .         
vs           .         
am           0.01364372
gear         .         
carb         .         

Call:  cv.glmnet(x = x, y = y, alpha = 1) 

Measure: Mean-Squared Error 

    Lambda Index Measure    SE Nonzero
min 0.6648    23   9.718 3.588       4
1se 1.6854    13  13.302 6.501       3
相关推荐
军军君011 分钟前
Three.js基础功能学习七:加载器与管理器
开发语言·前端·javascript·学习·3d·threejs·三维
liulilittle3 分钟前
OPENPPP2 网络驱动模式
开发语言·网络·c++·网络协议·信息与通信·通信
mjhcsp7 分钟前
C++ AC 自动机:原理、实现与应用全解析
java·开发语言·c++·ac 自动机
huihuihuanhuan.xin8 分钟前
后端八股之java并发编程
java·开发语言
寻星探路12 分钟前
【算法通关】双指针技巧深度解析:从基础到巅峰(Java 最优解)
java·开发语言·人工智能·python·算法·ai·指针
崇山峻岭之间14 分钟前
Matlab学习记录32
开发语言·学习·matlab
向上的车轮15 分钟前
如何选择Python IDE?
开发语言·ide·python
隐退山林27 分钟前
JavaEE:多线程初阶(二)
java·开发语言·jvm
乌暮28 分钟前
JavaEE初阶---《JUC 并发编程完全指南:组件用法、原理剖析与面试应答》
java·开发语言·后端·学习·面试·java-ee
CCPC不拿奖不改名31 分钟前
计算机网络:电脑访问网站的完整流程详解+面试习题
开发语言·python·学习·计算机网络·面试·职场和发展