使用R语言glmnet包进行正则化lasso回归

正则化的原理是尽可能多的将数据中的特征塞进最终模型,特征越多越可以更好地解释数据集的错综复杂。在应用正则化后,每个特征对模型部分的解释程度可能完全不同。通过使用正则化可以减少数据集的噪声,这些噪声可能来对最终模型几乎没有形象的特征。为了利用这种正则化技术,可以调用特定类型的回归模型,称为套索回归(lasso regression),此处使用的R语言自带的数据集mtcars数据集。

原书(Introduction to Machine Learning with R)使用的是lasso2包的l1ce()函数,此包已弃用,采用从历史文档手动安装的方式无法与现在的R版本匹配,故改用glmnet包的cv.glmnet函数。

R 复制代码
library(glmnet)  

# 选择特征和设置响应变量
#可改成(mpg ~ wy + cyl)
x <- model.matrix(mpg ~ ., data = mtcars)[, -1]
y <- mtcars$mpg

# 执行Lasso交叉验证
cv_fit <- cv.glmnet(x, y, alpha = 1)  
# 根据最小MSE选择lambda值
optimal_lambda <- cv_fit$lambda.min  
# 拟合最终Lasso模型  
lasso_model <- glmnet(x, y, alpha = 1, lambda = optimal_lambda)  

print(coef(lasso_model)) 
print(cv_fit)

输出:

R 复制代码
11 x 1 sparse Matrix of class "dgCMatrix"
                     s0
(Intercept) 36.44441107
cyl         -0.89269853
disp         .         
hp          -0.01282277
drat         .         
wt          -2.78337592
qsec         .         
vs           .         
am           0.01364372
gear         .         
carb         .         

Call:  cv.glmnet(x = x, y = y, alpha = 1) 

Measure: Mean-Squared Error 

    Lambda Index Measure    SE Nonzero
min 0.6648    23   9.718 3.588       4
1se 1.6854    13  13.302 6.501       3
相关推荐
LawrenceLan3 小时前
Flutter 零基础入门(十一):空安全(Null Safety)基础
开发语言·flutter·dart
txinyu的博客3 小时前
解析业务层的key冲突问题
开发语言·c++·分布式
码不停蹄Zzz3 小时前
C语言第1章
c语言·开发语言
WJSKad12354 小时前
Mask R-CNN托盘完整性检测与分类实战指南_3
分类·r语言·cnn
行者964 小时前
Flutter跨平台开发在OpenHarmony上的评分组件实现与优化
开发语言·flutter·harmonyos·鸿蒙
阿蒙Amon4 小时前
C#每日面试题-Array和ArrayList的区别
java·开发语言·c#
SmartRadio4 小时前
ESP32添加修改蓝牙名称和获取蓝牙连接状态的AT命令-完整UART BLE服务功能后的完整`main.c`代码
c语言·开发语言·c++·esp32·ble
且去填词5 小时前
Go 语言的“反叛”——为什么少即是多?
开发语言·后端·面试·go
知乎的哥廷根数学学派5 小时前
基于生成对抗U-Net混合架构的隧道衬砌缺陷地质雷达数据智能反演与成像方法(以模拟信号为例,Pytorch)
开发语言·人工智能·pytorch·python·深度学习·机器学习
yeziyfx5 小时前
kotlin中 ?:的用法
android·开发语言·kotlin