使用R语言glmnet包进行正则化lasso回归

正则化的原理是尽可能多的将数据中的特征塞进最终模型,特征越多越可以更好地解释数据集的错综复杂。在应用正则化后,每个特征对模型部分的解释程度可能完全不同。通过使用正则化可以减少数据集的噪声,这些噪声可能来对最终模型几乎没有形象的特征。为了利用这种正则化技术,可以调用特定类型的回归模型,称为套索回归(lasso regression),此处使用的R语言自带的数据集mtcars数据集。

原书(Introduction to Machine Learning with R)使用的是lasso2包的l1ce()函数,此包已弃用,采用从历史文档手动安装的方式无法与现在的R版本匹配,故改用glmnet包的cv.glmnet函数。

R 复制代码
library(glmnet)  

# 选择特征和设置响应变量
#可改成(mpg ~ wy + cyl)
x <- model.matrix(mpg ~ ., data = mtcars)[, -1]
y <- mtcars$mpg

# 执行Lasso交叉验证
cv_fit <- cv.glmnet(x, y, alpha = 1)  
# 根据最小MSE选择lambda值
optimal_lambda <- cv_fit$lambda.min  
# 拟合最终Lasso模型  
lasso_model <- glmnet(x, y, alpha = 1, lambda = optimal_lambda)  

print(coef(lasso_model)) 
print(cv_fit)

输出:

R 复制代码
11 x 1 sparse Matrix of class "dgCMatrix"
                     s0
(Intercept) 36.44441107
cyl         -0.89269853
disp         .         
hp          -0.01282277
drat         .         
wt          -2.78337592
qsec         .         
vs           .         
am           0.01364372
gear         .         
carb         .         

Call:  cv.glmnet(x = x, y = y, alpha = 1) 

Measure: Mean-Squared Error 

    Lambda Index Measure    SE Nonzero
min 0.6648    23   9.718 3.588       4
1se 1.6854    13  13.302 6.501       3
相关推荐
悟能不能悟3 小时前
java HttpServletRequest 设置header
java·开发语言
云栖梦泽3 小时前
易语言运维自动化:中小微企业的「数字化运维瑞士军刀」
开发语言
刘97533 小时前
【第23天】23c#今日小结
开发语言·c#
郝学胜-神的一滴3 小时前
线程同步:并行世界的秩序守护者
java·linux·开发语言·c++·程序人生
superman超哥3 小时前
Rust 移动语义(Move Semantics)的工作原理:零成本所有权转移的深度解析
开发语言·后端·rust·工作原理·深度解析·rust移动语义·move semantics
青茶3603 小时前
【js教程】如何用jq的js方法获取url链接上的参数值?
开发语言·前端·javascript
kisshuan123963 小时前
黄芪属植物物种识别与分类:基于 Faster R-CNN C4 模型的深度学习实现
深度学习·分类·r语言
superman超哥3 小时前
Rust 所有权转移在函数调用中的表现:编译期保证的零成本抽象
开发语言·后端·rust·函数调用·零成本抽象·rust所有权转移
xiaowu0803 小时前
C# 把dll分别放在指定的文件夹的方法
开发语言·c#
mg6683 小时前
0基础开发学习python工具_____用 Python + Pygame 打造绚丽烟花秀 轻松上手体验
开发语言·python·学习·pygame