使用R语言glmnet包进行正则化lasso回归

正则化的原理是尽可能多的将数据中的特征塞进最终模型,特征越多越可以更好地解释数据集的错综复杂。在应用正则化后,每个特征对模型部分的解释程度可能完全不同。通过使用正则化可以减少数据集的噪声,这些噪声可能来对最终模型几乎没有形象的特征。为了利用这种正则化技术,可以调用特定类型的回归模型,称为套索回归(lasso regression),此处使用的R语言自带的数据集mtcars数据集。

原书(Introduction to Machine Learning with R)使用的是lasso2包的l1ce()函数,此包已弃用,采用从历史文档手动安装的方式无法与现在的R版本匹配,故改用glmnet包的cv.glmnet函数。

R 复制代码
library(glmnet)  

# 选择特征和设置响应变量
#可改成(mpg ~ wy + cyl)
x <- model.matrix(mpg ~ ., data = mtcars)[, -1]
y <- mtcars$mpg

# 执行Lasso交叉验证
cv_fit <- cv.glmnet(x, y, alpha = 1)  
# 根据最小MSE选择lambda值
optimal_lambda <- cv_fit$lambda.min  
# 拟合最终Lasso模型  
lasso_model <- glmnet(x, y, alpha = 1, lambda = optimal_lambda)  

print(coef(lasso_model)) 
print(cv_fit)

输出:

R 复制代码
11 x 1 sparse Matrix of class "dgCMatrix"
                     s0
(Intercept) 36.44441107
cyl         -0.89269853
disp         .         
hp          -0.01282277
drat         .         
wt          -2.78337592
qsec         .         
vs           .         
am           0.01364372
gear         .         
carb         .         

Call:  cv.glmnet(x = x, y = y, alpha = 1) 

Measure: Mean-Squared Error 

    Lambda Index Measure    SE Nonzero
min 0.6648    23   9.718 3.588       4
1se 1.6854    13  13.302 6.501       3
相关推荐
似水এ᭄往昔5 小时前
【C++】--封装红⿊树实现mymap和myset
开发语言·数据结构·c++·算法·stl
charlie1145141915 小时前
嵌入式现代C++教程:C++98——从C向C++的演化(3)
c语言·开发语言·c++·笔记·学习·嵌入式
TAEHENGV5 小时前
创建目标模块 Cordova 与 OpenHarmony 混合开发实战
android·java·开发语言
程序员zgh5 小时前
C语言 指针用法与区别(指针常量、常量指针、指针函数、函数指针、二级指针)
c语言·开发语言·jvm·c++
是一个Bug5 小时前
如何阅读JDK源码?
java·开发语言
石头dhf5 小时前
大模型配置
开发语言·python
inferno5 小时前
JavaScript 基础
开发语言·前端·javascript
派大鑫wink6 小时前
【Day15】集合框架(三):Map 接口(HashMap 底层原理 + 实战)
java·开发语言
派大鑫wink6 小时前
【Day14】集合框架(二):Set 接口(HashSet、TreeSet)去重与排序
java·开发语言
sort浅忆6 小时前
deeptest执行接口脚本,添加python脚本断言
开发语言·python