使用R语言glmnet包进行正则化lasso回归

正则化的原理是尽可能多的将数据中的特征塞进最终模型,特征越多越可以更好地解释数据集的错综复杂。在应用正则化后,每个特征对模型部分的解释程度可能完全不同。通过使用正则化可以减少数据集的噪声,这些噪声可能来对最终模型几乎没有形象的特征。为了利用这种正则化技术,可以调用特定类型的回归模型,称为套索回归(lasso regression),此处使用的R语言自带的数据集mtcars数据集。

原书(Introduction to Machine Learning with R)使用的是lasso2包的l1ce()函数,此包已弃用,采用从历史文档手动安装的方式无法与现在的R版本匹配,故改用glmnet包的cv.glmnet函数。

R 复制代码
library(glmnet)  

# 选择特征和设置响应变量
#可改成(mpg ~ wy + cyl)
x <- model.matrix(mpg ~ ., data = mtcars)[, -1]
y <- mtcars$mpg

# 执行Lasso交叉验证
cv_fit <- cv.glmnet(x, y, alpha = 1)  
# 根据最小MSE选择lambda值
optimal_lambda <- cv_fit$lambda.min  
# 拟合最终Lasso模型  
lasso_model <- glmnet(x, y, alpha = 1, lambda = optimal_lambda)  

print(coef(lasso_model)) 
print(cv_fit)

输出:

R 复制代码
11 x 1 sparse Matrix of class "dgCMatrix"
                     s0
(Intercept) 36.44441107
cyl         -0.89269853
disp         .         
hp          -0.01282277
drat         .         
wt          -2.78337592
qsec         .         
vs           .         
am           0.01364372
gear         .         
carb         .         

Call:  cv.glmnet(x = x, y = y, alpha = 1) 

Measure: Mean-Squared Error 

    Lambda Index Measure    SE Nonzero
min 0.6648    23   9.718 3.588       4
1se 1.6854    13  13.302 6.501       3
相关推荐
hewence12 分钟前
Kotlin CoroutineContext 详解
android·开发语言·kotlin
IvanCodes3 分钟前
七、C语言指针
c语言·开发语言
寻寻觅觅☆8 分钟前
东华OJ-基础题-120-顺序的分数(C++)
开发语言·c++·算法
Myosotis51315 分钟前
作业 第三次
开发语言·python
学编程的闹钟15 分钟前
C语言WSAGetLastError函数
c语言·开发语言·学习
阿里嘎多学长20 分钟前
2026-02-12 GitHub 热点项目精选
开发语言·程序员·github·代码托管
Ronin30531 分钟前
虚拟机数据管理模块
开发语言·c++·rabbitmq
3GPP仿真实验室32 分钟前
【Matlab源码】6G候选波形:MIMO-OFDM-IM 增强仿真平台
开发语言·网络·matlab
晓131341 分钟前
第五章 【若依框架:优化】高级特性与性能优化
java·开发语言·性能优化·若依
一叶之秋14121 小时前
基石之力:掌握 C++ 继承的核心奥秘
开发语言·c++·算法