leetcode hot100不同路径Ⅱ

本题和之前做的不同路径类似,区别是本题中加入了障碍,遇到障碍之后需要避开(注意,这里依旧是只能向下向右移动),那么也就是说,有障碍的点是到达不了的,并且 ,我在初始化的时候,如果第一行或者第一列有障碍,那无法绕过去,因为只能向右向下移动!

也就是说这个题最大的区别就是初始化的位置需要进行额外的判断,另外一个地方就是在递推公式的时候,只有我们能走到下一个位置,也就是下一个位置不是障碍的时候,我们才能递推,进行累加结果,如果是障碍,那应该直接将路径置为0。

按照动态规划五部曲来做:

确定dp数组及其含义:dp数组表示到达指定位置的路径的个数

确定递推公式:如果目标点没有障碍,那么就是dp[i][j] = dp[i-1][j] + dp[i][j-1]。如果是障碍则直接置为0。

初始化dp数组:和上述一样,我们依旧初始化第一行和第一列,当遇到障碍后便不再初始化!

确定遍历顺序:依旧从左到右,从上到下(题中条件)

打印数组

复制代码
class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        int m = obstacleGrid.length;
        int n = obstacleGrid[0].length;
        int[][] dp = new int[m][n];

        //如果在起点或终点出现了障碍,直接返回0
        if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) {
            return 0;
        }

        for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) {
            dp[i][0] = 1;
        }
        for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) {
            dp[0][j] = 1;
        }

        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                dp[i][j] = (obstacleGrid[i][j] == 0) ? dp[i - 1][j] + dp[i][j - 1] : 0;
            }
        }
        return dp[m - 1][n - 1];
    }
}

注意,这里关于m和n的边界选取依旧和上一题一样!

相关推荐
xlq223222 小时前
22.多态(上)
开发语言·c++·算法
666HZ6662 小时前
C语言——高精度加法
c语言·开发语言·算法
sweet丶2 小时前
iOS MMKV原理整理总结:比UserDefaults快100倍的存储方案是如何炼成的?
算法·架构
云里雾里!3 小时前
力扣 209. 长度最小的子数组:滑动窗口解法完整解析
数据结构·算法·leetcode
CoderYanger4 小时前
递归、搜索与回溯-穷举vs暴搜vs深搜vs回溯vs剪枝:12.全排列
java·算法·leetcode·机器学习·深度优先·剪枝·1024程序员节
憨憨崽&4 小时前
进击大厂:程序员必须修炼的算法“内功”与思维体系
开发语言·数据结构·算法·链表·贪心算法·线性回归·动态规划
自动化测试薰儿5 小时前
软件测试经典面试题整理(一)
软件测试·职场和发展
chem41115 小时前
C 语言 函数指针和函数指针数组
c语言·数据结构·算法
liu****6 小时前
八.函数递归
c语言·开发语言·数据结构·c++·算法
CM莫问6 小时前
详解机器学习经典模型(原理及应用)——岭回归
人工智能·python·算法·机器学习·回归