leetcode hot100不同路径Ⅱ

本题和之前做的不同路径类似,区别是本题中加入了障碍,遇到障碍之后需要避开(注意,这里依旧是只能向下向右移动),那么也就是说,有障碍的点是到达不了的,并且 ,我在初始化的时候,如果第一行或者第一列有障碍,那无法绕过去,因为只能向右向下移动!

也就是说这个题最大的区别就是初始化的位置需要进行额外的判断,另外一个地方就是在递推公式的时候,只有我们能走到下一个位置,也就是下一个位置不是障碍的时候,我们才能递推,进行累加结果,如果是障碍,那应该直接将路径置为0。

按照动态规划五部曲来做:

确定dp数组及其含义:dp数组表示到达指定位置的路径的个数

确定递推公式:如果目标点没有障碍,那么就是dp[i][j] = dp[i-1][j] + dp[i][j-1]。如果是障碍则直接置为0。

初始化dp数组:和上述一样,我们依旧初始化第一行和第一列,当遇到障碍后便不再初始化!

确定遍历顺序:依旧从左到右,从上到下(题中条件)

打印数组

复制代码
class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        int m = obstacleGrid.length;
        int n = obstacleGrid[0].length;
        int[][] dp = new int[m][n];

        //如果在起点或终点出现了障碍,直接返回0
        if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) {
            return 0;
        }

        for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) {
            dp[i][0] = 1;
        }
        for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) {
            dp[0][j] = 1;
        }

        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                dp[i][j] = (obstacleGrid[i][j] == 0) ? dp[i - 1][j] + dp[i][j - 1] : 0;
            }
        }
        return dp[m - 1][n - 1];
    }
}

注意,这里关于m和n的边界选取依旧和上一题一样!

相关推荐
团子的二进制世界1 分钟前
G1垃圾收集器是如何工作的?
java·jvm·算法
吃杠碰小鸡5 分钟前
高中数学-数列-导数证明
前端·数学·算法
故事不长丨5 分钟前
C#线程同步:lock、Monitor、Mutex原理+用法+实战全解析
开发语言·算法·c#
long3166 分钟前
Aho-Corasick 模式搜索算法
java·数据结构·spring boot·后端·算法·排序算法
近津薪荼7 分钟前
dfs专题4——二叉树的深搜(验证二叉搜索树)
c++·学习·算法·深度优先
熊文豪15 分钟前
探索CANN ops-nn:高性能哈希算子技术解读
算法·哈希算法·cann
熊猫_豆豆32 分钟前
YOLOP车道检测
人工智能·python·算法
艾莉丝努力练剑1 小时前
【Linux:文件】Ext系列文件系统(初阶)
大数据·linux·运维·服务器·c++·人工智能·算法
偷吃的耗子1 小时前
【CNN算法理解】:CNN平移不变性详解:数学原理与实例
人工智能·算法·cnn
dazzle2 小时前
机器学习算法原理与实践-入门(三):使用数学方法实现KNN
人工智能·算法·机器学习