高光谱图像降噪方法(2D Wavelet, 3D Wavelet, FORPDN, HyRes等方法)

近年来,随着遥感应用的不断深入,高光谱图像研究已经成为遥感领域发展最迅速的技术之一。与其他传统成像技术相比,高光谱图像具有更多优势:更丰富的信息量、纳米级的光谱分辨率以及范围更广且连续的光谱。因此,在农业、军事、环境监测和食品工业领域有着广泛的应用。

高光谱图像巨大的应用潜力也使得对图像质量的要求日益提高。然而,由于成像系统和环境(传感器敏感度、光子效应、光线条件、校对误差)各种限制因素的影响,成像传感器获取的高光谱图像不可避免地会受到各种噪声的破坏,例如高斯噪声、脉冲噪声、死线、条纹等。这些噪声不仅大大降低高光谱图像的视觉效果,而且在分类、矿物勘探和目标检测等方面的后续应用中也造成不良影响。因此,高光谱降噪是改善高光谱图像应用性能的关键问题。

在过去的几十年里,研究人员提出了许多高光谱图像去噪方法,最直接的方法就是使用传统的一维或二维去噪方法对高光谱图像进行去噪。如果将高光谱图像中每一个像素看成一个一维信号,可以以逐像素的方式利用一维信号去噪方法对高光谱图像去噪。也可以将高光谱图像的每一个波段看作是二维自然图像,依次对每个波段使用传统的二维自然图像去噪方法进行去噪。

本代码采用2D Wavelet, 3D Wavelet, FORPDN, HyRes等方法对高光谱图像进行降噪,运行环境为MATLAB R2021B,压缩包=数据+代码+参考文献。

部分代码如下:

复制代码
L=5;%level of decompositions
NFC=10;%number of filter coefficients
qmf = daubcqf(NFC,'min');%wavelet filter
t_max=4;  % maximum search interval
n=10; % search interval number
t1=linspace(0,t_max,n);
options.noisest=0;
options.scaling=1;
options.type='FORPDNT';

部分出图如下:

工学博士,担任《Mechanical System and Signal Processing》审稿专家,担任《中国电机工程学报》优秀审稿专家,《控制与决策》,《系统工程与电子技术》,《电力系统保护与控制》,《宇航学报》等EI期刊审稿专家,担任《计算机科学》,《电子器件》 , 《现代制造过程》 ,《电源学报》,《船舶工程》 ,《轴承》 ,《工矿自动化》 ,《重庆理工大学学报》 ,《噪声与振动控制》 ,《机械传动》 ,《机械强度》 ,《机械科学与技术》 ,《机床与液压》,《声学技术》,《应用声学》,《石油机械》,《西安工业大学学报》等中文核心审稿专家。

擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

相关推荐
m0_504135301 小时前
代码随想录算法训练营第六十一天 | floyd算法
算法
__lost4 小时前
MATLAB画出3d的常见复杂有机分子和矿物的分子结构
开发语言·人工智能·matlab·化学·分子结构
xin007hoyo5 小时前
算法笔记.染色法判断二分图
数据结构·笔记·算法
视觉AI7 小时前
SiamMask原理详解:从SiamFC到SiamRPN++,再到多任务分支设计
人工智能·目标检测·计算机视觉·目标分割
এ᭄画画的北北7 小时前
力扣-234.回文链表
算法·leetcode·链表
八股文领域大手子8 小时前
深入理解缓存淘汰策略:LRU 与 LFU 算法详解及 Java 实现
java·数据库·算法·缓存·mybatis·哈希算法
__lost9 小时前
C++ 解决一个简单的图论问题 —— 最小生成树(以 Prim 算法为例)
算法·图论·最小生成树·prim算法
白熊1889 小时前
【计算机视觉】CV实战项目- DFace: 基于深度学习的高性能人脸识别
人工智能·深度学习·计算机视觉
wuqingshun31415910 小时前
蓝桥杯 11. 打印大X
数据结构·算法·职场和发展·蓝桥杯·深度优先
Blossom.11810 小时前
量子网络:构建未来通信的超高速“高速公路”
网络·opencv·算法·安全·机器学习·密码学·量子计算