深度学习环境配置常见指令

首先打开anaconda prompt,激活对应虚拟环境。

导入torch并获取对应版本

python 复制代码
import torch
torch.__version__

导入torchvision并获取对应版本

python 复制代码
import torchvision
torchvision.__version__

检查cuda是否可用

python 复制代码
torch.cuda.is_available()

获取CUDA设备数

python 复制代码
torch.cuda.device_count()

获取当前cuda设备id

python 复制代码
torch.cuda.current_device()

获取CUDA设备名称

python 复制代码
torch.cuda.get_device_name(0)
相关推荐
说私域3 小时前
从“高密度占有”到“点状渗透”:论“开源AI智能名片链动2+1模式”在S2B2C商城小程序中的渠道革新
人工智能·小程序
limenga1024 小时前
TensorFlow Keras:快速搭建神经网络模型
人工智能·python·深度学习·神经网络·机器学习·tensorflow
KG_LLM图谱增强大模型6 小时前
Vgent:基于图的多模态检索推理增强生成框架GraphRAG,突破长视频理解瓶颈
大数据·人工智能·算法·大模型·知识图谱·多模态
AKAMAI6 小时前
企业如何平衡AI创新与风险
人工智能·云原生·云计算
半tour费7 小时前
TextCNN-NPU移植与性能优化实战
python·深度学习·分类·cnn·华为云
TDengine (老段)8 小时前
优化 TDengine IDMP 面板编辑的几种方法
人工智能·物联网·ai·时序数据库·tdengine·涛思数据
数据的世界018 小时前
Visual Studio 2026 正式发布:AI 原生 IDE 与性能革命的双向突破
ide·人工智能·visual studio
shayudiandian9 小时前
深度学习中的激活函数全解析:该选哪一个?
人工智能·深度学习
视界先声10 小时前
如何选择合适的养老服务机器人
人工智能·物联网·机器人