深度学习环境配置常见指令

首先打开anaconda prompt,激活对应虚拟环境。

导入torch并获取对应版本

python 复制代码
import torch
torch.__version__

导入torchvision并获取对应版本

python 复制代码
import torchvision
torchvision.__version__

检查cuda是否可用

python 复制代码
torch.cuda.is_available()

获取CUDA设备数

python 复制代码
torch.cuda.device_count()

获取当前cuda设备id

python 复制代码
torch.cuda.current_device()

获取CUDA设备名称

python 复制代码
torch.cuda.get_device_name(0)
相关推荐
高洁011 小时前
10分钟了解向量数据库(1)
python·深度学习·机器学习·transformer·知识图谱
汗流浃背了吧,老弟!1 小时前
智能客服文本匹配系统
人工智能
gihigo19981 小时前
MATLAB中实现信号迭代解卷积的几种方法
人工智能·深度学习·matlab
DP+GISer1 小时前
00基于pytorch的深度学习遥感地物分类全流程实战教程(包含遥感深度学习数据集制作与大图预测)-前言
pytorch·python·深度学习·图像分割·遥感·地物分类
ASD123asfadxv1 小时前
交通手势识别_YOLO11实例分割实现八种手势检测与识别_DWR改进
人工智能·yolo
kisshuan123961 小时前
黄芪属植物物种识别与分类:基于 Faster R-CNN C4 模型的深度学习实现
深度学习·分类·r语言
拉姆哥的小屋1 小时前
从T5到Sentence-BERT:打造下一代个性化推荐系统 - EmbSum深度解析
人工智能·深度学习
LJ97951111 小时前
媒介宣发数字化:如何用AI打通资源与效果的任督二脉
人工智能
CoovallyAIHub1 小时前
YOLOv12之后,AI在火场如何进化?2025最后一篇YOLO论文揭示:要在浓烟中看见关键,仅靠注意力还不够
深度学习·算法·计算机视觉