激光条纹中心线提取算法FPGA实现方案

1 概述

激光条纹中心线提取是3D线激光测量领域一个较为基础且重要的算法。目前,激光条纹中心线提取已有多种成熟的算法,有很多相关的博客和论文。

激光条纹中心线提取的真实意义在于工程化和产品化的实际应用,而很多算法目前只能用于学术研究或理论实验,无法在应用端或产品端商用化落地。

常见的中心线提取算法有:

  • 边缘法
  • 中心法
  • 阈值法
  • 形态学细化法
  • 极值法
  • 灰度重心法
  • 曲线拟合法
  • Steger算法

上述这些算法中只有灰度重心法,曲线拟合法,Steger算法3种方法可以达到亚像素精度。

由于测量环境的影响,及被测物体表面材料及轮廓的多样性,实际成像的激光条纹会出现噪声、起伏、倾斜、重叠、间断、过曝、反光等现象。没有一种算法可以完全适应各种应用场景并解决所有这些问题。在实际应用时,往往需要以某一种算法为基础,配合设计多种策略进行排列组合使用,尽可能解决会影响测量结果的问题。

2 FPGA实现方案

笔者开发了一套已成熟商用化的FPGA版本的高性能中心线提取算法。性能指标可达市场一线3D线激光测量类产品,可适配各种分辨率及不同速度等级的CMOS图像传感器。例如:

横向分别率为2K量级,每个像素时钟输出8个像素点的CMOS图像传感器。如,安森美的PYTHON2000;索尼的IMX421。以Xilinx 7系列FPGA为例,资源消耗如下:

横向分别率为2K量级,每个像素时钟输出32个像素点的CMOS图像传感器。如,LUXIMA的LUX2810、LUX2100;E2V的Flash 2K。FPGA资源消耗如下:

横向分别率为4K量级,每个像素时钟输出64个像素点的CMOS图像传感器。如,E2V的Flash 4K。FPGA资源消耗如下:

若需项目合作请私信详询。

相关推荐
AndrewHZ12 小时前
【图像处理基石】如何从色彩的角度分析一张图是否是好图?
图像处理·计算机视觉·cv·聚类算法·色彩科学
Dev7z14 小时前
基于图像处理技术的智能答题卡识别与评分系统设计与实现
图像处理·人工智能
这张生成的图像能检测吗1 天前
(论文速读)基于DCP-MobileViT网络的焊接缺陷识别
图像处理·深度学习·计算机视觉·可视化·缺陷识别·焊缝缺陷
淬炼之火2 天前
阅读:基于深度学习的红外可见光图像融合综述
图像处理·深度学习·机器学习·计算机视觉·特征融合·红外图像识别
CoderBob2 天前
【EmbeddedGUI】简易Page开发模式
c语言·图像处理·单片机
AndrewHZ2 天前
【图像处理基石】 怎么让图片变成波普风?
图像处理·算法·计算机视觉·风格迁移·cv
坏孩子的诺亚方舟2 天前
FPGA系统架构设计实践5_IP的封装优化
fpga·vivado·rqs·工程质量
坏孩子的诺亚方舟3 天前
FPGA系统架构设计实践4_SelectIO
fpga·xilinx·selectio
XINVRY-FPGA3 天前
XC95288XL-10TQG144I Xilinx AMD CPLD
arm开发·单片机·嵌入式硬件·mcu·fpga开发·硬件工程·fpga
XXYBMOOO3 天前
探索图像处理中的九种滤波器:从模糊到锐化与边缘检测
图像处理·人工智能·python·opencv·计算机视觉