激光条纹中心线提取算法FPGA实现方案

1 概述

激光条纹中心线提取是3D线激光测量领域一个较为基础且重要的算法。目前,激光条纹中心线提取已有多种成熟的算法,有很多相关的博客和论文。

激光条纹中心线提取的真实意义在于工程化和产品化的实际应用,而很多算法目前只能用于学术研究或理论实验,无法在应用端或产品端商用化落地。

常见的中心线提取算法有:

  • 边缘法
  • 中心法
  • 阈值法
  • 形态学细化法
  • 极值法
  • 灰度重心法
  • 曲线拟合法
  • Steger算法

上述这些算法中只有灰度重心法,曲线拟合法,Steger算法3种方法可以达到亚像素精度。

由于测量环境的影响,及被测物体表面材料及轮廓的多样性,实际成像的激光条纹会出现噪声、起伏、倾斜、重叠、间断、过曝、反光等现象。没有一种算法可以完全适应各种应用场景并解决所有这些问题。在实际应用时,往往需要以某一种算法为基础,配合设计多种策略进行排列组合使用,尽可能解决会影响测量结果的问题。

2 FPGA实现方案

笔者开发了一套已成熟商用化的FPGA版本的高性能中心线提取算法。性能指标可达市场一线3D线激光测量类产品,可适配各种分辨率及不同速度等级的CMOS图像传感器。例如:

横向分别率为2K量级,每个像素时钟输出8个像素点的CMOS图像传感器。如,安森美的PYTHON2000;索尼的IMX421。以Xilinx 7系列FPGA为例,资源消耗如下:

横向分别率为2K量级,每个像素时钟输出32个像素点的CMOS图像传感器。如,LUXIMA的LUX2810、LUX2100;E2V的Flash 2K。FPGA资源消耗如下:

横向分别率为4K量级,每个像素时钟输出64个像素点的CMOS图像传感器。如,E2V的Flash 4K。FPGA资源消耗如下:

若需项目合作请私信详询。

相关推荐
啊阿狸不会拉杆7 小时前
《数字图像处理》第 7 章 - 小波与多分辨率处理
图像处理·人工智能·算法·计算机视觉·数字图像处理
AI即插即用7 小时前
即插即用系列 | CVPR 2025 AmbiSSL:首个注释模糊感知的半监督医学图像分割框架
图像处理·人工智能·深度学习·计算机视觉·视觉检测
BZGLOqgZ11 小时前
8位SAR ADC系统架构与功能解析
图像处理
沃达德软件16 小时前
模糊图像处理系统功能解析
图像处理·人工智能·深度学习·目标检测·计算机视觉·目标跟踪·超分辨率重建
我命由我1234517 小时前
图像格式:RGB、BGR、RGBA、BGRA
图像处理·经验分享·笔记·学习·学习方法·photoshop·设计规范
feifeigo12317 小时前
Matlab去除CT扫描图像环形伪影的实现方法
图像处理·计算机视觉·matlab
地球资源数据云19 小时前
Arctoolbox系列教程3D Analyst之栅格插值(四)
图像处理·arcgis·学习方法
@fai19 小时前
[特殊字符] 在 PyQt6 中实现 Photoshop 风格的“橡皮擦”光标:高性能、不随缩放变形、精准跟随鼠标
图像处理·python·pyqt·photoshop
地球资源数据云19 小时前
Arctoolbox系列教程3D Analyst之栅格插值(五)
图像处理·arcgis·学习方法
北城笑笑19 小时前
FPGA 50 ,Xilinx Vivado 2020 版本安装流程,以及常见问题解析,附中文翻译( Vivado 2020 版本安装教程 )
fpga开发·fpga