激光条纹中心线提取算法FPGA实现方案

1 概述

激光条纹中心线提取是3D线激光测量领域一个较为基础且重要的算法。目前,激光条纹中心线提取已有多种成熟的算法,有很多相关的博客和论文。

激光条纹中心线提取的真实意义在于工程化和产品化的实际应用,而很多算法目前只能用于学术研究或理论实验,无法在应用端或产品端商用化落地。

常见的中心线提取算法有:

  • 边缘法
  • 中心法
  • 阈值法
  • 形态学细化法
  • 极值法
  • 灰度重心法
  • 曲线拟合法
  • Steger算法

上述这些算法中只有灰度重心法,曲线拟合法,Steger算法3种方法可以达到亚像素精度。

由于测量环境的影响,及被测物体表面材料及轮廓的多样性,实际成像的激光条纹会出现噪声、起伏、倾斜、重叠、间断、过曝、反光等现象。没有一种算法可以完全适应各种应用场景并解决所有这些问题。在实际应用时,往往需要以某一种算法为基础,配合设计多种策略进行排列组合使用,尽可能解决会影响测量结果的问题。

2 FPGA实现方案

笔者开发了一套已成熟商用化的FPGA版本的高性能中心线提取算法。性能指标可达市场一线3D线激光测量类产品,可适配各种分辨率及不同速度等级的CMOS图像传感器。例如:

横向分别率为2K量级,每个像素时钟输出8个像素点的CMOS图像传感器。如,安森美的PYTHON2000;索尼的IMX421。以Xilinx 7系列FPGA为例,资源消耗如下:

横向分别率为2K量级,每个像素时钟输出32个像素点的CMOS图像传感器。如,LUXIMA的LUX2810、LUX2100;E2V的Flash 2K。FPGA资源消耗如下:

横向分别率为4K量级,每个像素时钟输出64个像素点的CMOS图像传感器。如,E2V的Flash 4K。FPGA资源消耗如下:

若需项目合作请私信详询。

相关推荐
sali-tec9 小时前
C# 基于halcon的视觉工作流-章67 深度学习-分类
开发语言·图像处理·人工智能·深度学习·算法·计算机视觉·分类
图学习小组9 小时前
Learning to See in the Extremely Dark
图像处理·计算机视觉
Coding茶水间10 小时前
基于深度学习的木薯病害检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
c#上位机10 小时前
halcon刚性变换(平移+旋转)——vector_to_rigid
图像处理·人工智能·计算机视觉·c#·halcon
LiYingL14 小时前
GPT-4o 级图像生成的民主化:Janus-4o 和 ShareGPT-4o-Image 挑战
图像处理
【ql君】qlexcel16 小时前
OpenMV的介绍和使用
机器视觉·摄像头·openmv
前端不太难19 小时前
RN 图像处理(裁剪、压缩、滤镜)性能很差怎么办?
图像处理·人工智能
明洞日记19 小时前
【VTK手册024】高效等值面提取:vtkFlyingEdges3D 详解与实战
c++·图像处理·vtk·图形渲染
c#上位机20 小时前
halcon创建对象数组——concat_obj
图像处理·计算机视觉·c#·halcon
song50120 小时前
鸿蒙 Flutter 日志系统:分级日志与鸿蒙 Hilog 集成
图像处理·人工智能·分布式·flutter·华为