激光条纹中心线提取算法FPGA实现方案

1 概述

激光条纹中心线提取是3D线激光测量领域一个较为基础且重要的算法。目前,激光条纹中心线提取已有多种成熟的算法,有很多相关的博客和论文。

激光条纹中心线提取的真实意义在于工程化和产品化的实际应用,而很多算法目前只能用于学术研究或理论实验,无法在应用端或产品端商用化落地。

常见的中心线提取算法有:

  • 边缘法
  • 中心法
  • 阈值法
  • 形态学细化法
  • 极值法
  • 灰度重心法
  • 曲线拟合法
  • Steger算法

上述这些算法中只有灰度重心法,曲线拟合法,Steger算法3种方法可以达到亚像素精度。

由于测量环境的影响,及被测物体表面材料及轮廓的多样性,实际成像的激光条纹会出现噪声、起伏、倾斜、重叠、间断、过曝、反光等现象。没有一种算法可以完全适应各种应用场景并解决所有这些问题。在实际应用时,往往需要以某一种算法为基础,配合设计多种策略进行排列组合使用,尽可能解决会影响测量结果的问题。

2 FPGA实现方案

笔者开发了一套已成熟商用化的FPGA版本的高性能中心线提取算法。性能指标可达市场一线3D线激光测量类产品,可适配各种分辨率及不同速度等级的CMOS图像传感器。例如:

横向分别率为2K量级,每个像素时钟输出8个像素点的CMOS图像传感器。如,安森美的PYTHON2000;索尼的IMX421。以Xilinx 7系列FPGA为例,资源消耗如下:

横向分别率为2K量级,每个像素时钟输出32个像素点的CMOS图像传感器。如,LUXIMA的LUX2810、LUX2100;E2V的Flash 2K。FPGA资源消耗如下:

横向分别率为4K量级,每个像素时钟输出64个像素点的CMOS图像传感器。如,E2V的Flash 4K。FPGA资源消耗如下:

若需项目合作请私信详询。

相关推荐
aaaffaewrerewrwer2 天前
2026年好用的 AVIF 转 WebP 在线工具推荐(支持批量转换)
图像处理·安全
清风与日月3 天前
OpenCV imgproc图像处理模块常用算子及示例
图像处理·opencv·计算机视觉
sali-tec3 天前
C# 基于OpenCv的视觉工作流-章25-ORB特征点
图像处理·人工智能·opencv·算法·计算机视觉
Liue612312314 天前
YOLO11有效改进系列及项目实战目录_食品包装有效期检测_包含图像处理_目标检测等创新机制_以及_实际应用案例
图像处理·人工智能·目标检测
imbackneverdie4 天前
从机制图、流程图到数据图,覆盖《Cell》《Nature》级期刊插图
图像处理·人工智能·ai·aigc·流程图·科研绘图
reddingtons4 天前
Magnific AI:拒绝“马赛克”?AI 幻觉重绘流,拯救 1024px 废片
图像处理·人工智能·设计模式·新媒体运营·aigc·设计师·教育电商
imbackneverdie5 天前
2026国自然申报倒计时:如何利用AI辅助工具高效完成申请书撰写
图像处理·人工智能·ai·ai写作·国自然·ai工具·国家自然科学基金
sali-tec5 天前
C# 基于OpenCv的视觉工作流-章24-SURF特征点
图像处理·人工智能·opencv·算法·计算机视觉
qq_387459585 天前
电脑版打开3D图纸的指南
图像处理·3d
kanhao1005 天前
电平交叉采样 (Level-Crossing Sampling)
算法·fpga开发·fpga