激光条纹中心线提取算法FPGA实现方案

1 概述

激光条纹中心线提取是3D线激光测量领域一个较为基础且重要的算法。目前,激光条纹中心线提取已有多种成熟的算法,有很多相关的博客和论文。

激光条纹中心线提取的真实意义在于工程化和产品化的实际应用,而很多算法目前只能用于学术研究或理论实验,无法在应用端或产品端商用化落地。

常见的中心线提取算法有:

  • 边缘法
  • 中心法
  • 阈值法
  • 形态学细化法
  • 极值法
  • 灰度重心法
  • 曲线拟合法
  • Steger算法

上述这些算法中只有灰度重心法,曲线拟合法,Steger算法3种方法可以达到亚像素精度。

由于测量环境的影响,及被测物体表面材料及轮廓的多样性,实际成像的激光条纹会出现噪声、起伏、倾斜、重叠、间断、过曝、反光等现象。没有一种算法可以完全适应各种应用场景并解决所有这些问题。在实际应用时,往往需要以某一种算法为基础,配合设计多种策略进行排列组合使用,尽可能解决会影响测量结果的问题。

2 FPGA实现方案

笔者开发了一套已成熟商用化的FPGA版本的高性能中心线提取算法。性能指标可达市场一线3D线激光测量类产品,可适配各种分辨率及不同速度等级的CMOS图像传感器。例如:

横向分别率为2K量级,每个像素时钟输出8个像素点的CMOS图像传感器。如,安森美的PYTHON2000;索尼的IMX421。以Xilinx 7系列FPGA为例,资源消耗如下:

横向分别率为2K量级,每个像素时钟输出32个像素点的CMOS图像传感器。如,LUXIMA的LUX2810、LUX2100;E2V的Flash 2K。FPGA资源消耗如下:

横向分别率为4K量级,每个像素时钟输出64个像素点的CMOS图像传感器。如,E2V的Flash 4K。FPGA资源消耗如下:

若需项目合作请私信详询。

相关推荐
北岛三生16 小时前
光学概念-相机模组(Camera Module)以及成像原理
图像处理·数码相机·模块测试
weixin_468466851 天前
电磁波成像(X射线、CT成像)原理简介
图像处理·相机·ct·视觉·pet·x射线·成像原理
AndrewHZ2 天前
【图像处理基石】图像预处理方面有哪些经典的算法?
图像处理·python·opencv·算法·计算机视觉·cv·图像预处理
SunflowerCoder2 天前
WPF迁移avalonia之图像处理(一)
图像处理·wpf·avalonia
双翌视觉2 天前
智能相机还是视觉系统?一文讲透工业视觉两大选择的取舍之道
科技·数码相机·自动化·机器视觉
那雨倾城3 天前
PiscCode轨迹跟踪Mediapipe + OpenCV进阶:速度估算
图像处理·人工智能·python·opencv·计算机视觉
璞致电子3 天前
【PZ-AU15P】璞致fpga开发板 Aritx UltraScalePlus PZ-AU15P 核心板与开发板用户手册
嵌入式硬件·fpga开发·fpga·fpga开发板·xilinx开发板
LeonDL1684 天前
【通用视觉框架】基于Python+OpenCV+PyQt5开发的视觉框架软件,全套源码,开箱即用
图像处理·人工智能·python·opencv·pyqt5·通用视觉框架软件·机器视觉软件框架
siliconstorm.ai4 天前
开源与闭源的再对决:从Grok到中国力量,AI生态走向何方?
大数据·图像处理·人工智能·语言模型·ai作画·云计算·机器翻译
山烛5 天前
OpenCV 图像轮廓检测
图像处理·人工智能·python·opencv·计算机视觉·轮廓检测