激光条纹中心线提取算法FPGA实现方案

1 概述

激光条纹中心线提取是3D线激光测量领域一个较为基础且重要的算法。目前,激光条纹中心线提取已有多种成熟的算法,有很多相关的博客和论文。

激光条纹中心线提取的真实意义在于工程化和产品化的实际应用,而很多算法目前只能用于学术研究或理论实验,无法在应用端或产品端商用化落地。

常见的中心线提取算法有:

  • 边缘法
  • 中心法
  • 阈值法
  • 形态学细化法
  • 极值法
  • 灰度重心法
  • 曲线拟合法
  • Steger算法

上述这些算法中只有灰度重心法,曲线拟合法,Steger算法3种方法可以达到亚像素精度。

由于测量环境的影响,及被测物体表面材料及轮廓的多样性,实际成像的激光条纹会出现噪声、起伏、倾斜、重叠、间断、过曝、反光等现象。没有一种算法可以完全适应各种应用场景并解决所有这些问题。在实际应用时,往往需要以某一种算法为基础,配合设计多种策略进行排列组合使用,尽可能解决会影响测量结果的问题。

2 FPGA实现方案

笔者开发了一套已成熟商用化的FPGA版本的高性能中心线提取算法。性能指标可达市场一线3D线激光测量类产品,可适配各种分辨率及不同速度等级的CMOS图像传感器。例如:

横向分别率为2K量级,每个像素时钟输出8个像素点的CMOS图像传感器。如,安森美的PYTHON2000;索尼的IMX421。以Xilinx 7系列FPGA为例,资源消耗如下:

横向分别率为2K量级,每个像素时钟输出32个像素点的CMOS图像传感器。如,LUXIMA的LUX2810、LUX2100;E2V的Flash 2K。FPGA资源消耗如下:

横向分别率为4K量级,每个像素时钟输出64个像素点的CMOS图像传感器。如,E2V的Flash 4K。FPGA资源消耗如下:

若需项目合作请私信详询。

相关推荐
9527华安6 小时前
国产安路FPGA开发设计培训课程,提供开发板+工程源码+视频教程+技术支持
fpga开发·fpga·安路·视频教程·培训·安路fpga
Dev7z10 小时前
基于Matlab传统图像处理的风景图像多风格转换与优化
图像处理·matlab·风景
brave and determined13 小时前
可编程逻辑器件学习(day36):从沙粒到智能核心:芯片设计、制造与封装的万字全景解析
fpga开发·制造·verilog·fpga·芯片设计·硬件设计·芯片制造
Dev7z1 天前
基于Matlab图像处理的EAN条码自动识别系统设计与实现
图像处理·人工智能
AndrewHZ1 天前
【图像处理基石】如何使用大模型进行图像处理工作?
图像处理·人工智能·深度学习·算法·llm·stablediffusion·可控性
AndrewHZ1 天前
【图像处理基石】图像处理的基础理论体系介绍
图像处理·人工智能·算法·计算机视觉·cv·理论体系
6***x5451 天前
C++在计算机视觉中的图像处理
c++·图像处理·计算机视觉·游戏引擎·logback·milvus
涤生8432 天前
图像处理中的投影变换(单应性变换)
图像处理·人工智能·计算机视觉
Q180809512 天前
FLOW 3D增材制造模拟:同轴送粉激光沉积与熔池温度场流场仿真
图像处理
p***h6432 天前
JavaScript图像处理开发
开发语言·javascript·图像处理