激光条纹中心线提取算法FPGA实现方案

1 概述

激光条纹中心线提取是3D线激光测量领域一个较为基础且重要的算法。目前,激光条纹中心线提取已有多种成熟的算法,有很多相关的博客和论文。

激光条纹中心线提取的真实意义在于工程化和产品化的实际应用,而很多算法目前只能用于学术研究或理论实验,无法在应用端或产品端商用化落地。

常见的中心线提取算法有:

  • 边缘法
  • 中心法
  • 阈值法
  • 形态学细化法
  • 极值法
  • 灰度重心法
  • 曲线拟合法
  • Steger算法

上述这些算法中只有灰度重心法,曲线拟合法,Steger算法3种方法可以达到亚像素精度。

由于测量环境的影响,及被测物体表面材料及轮廓的多样性,实际成像的激光条纹会出现噪声、起伏、倾斜、重叠、间断、过曝、反光等现象。没有一种算法可以完全适应各种应用场景并解决所有这些问题。在实际应用时,往往需要以某一种算法为基础,配合设计多种策略进行排列组合使用,尽可能解决会影响测量结果的问题。

2 FPGA实现方案

笔者开发了一套已成熟商用化的FPGA版本的高性能中心线提取算法。性能指标可达市场一线3D线激光测量类产品,可适配各种分辨率及不同速度等级的CMOS图像传感器。例如:

横向分别率为2K量级,每个像素时钟输出8个像素点的CMOS图像传感器。如,安森美的PYTHON2000;索尼的IMX421。以Xilinx 7系列FPGA为例,资源消耗如下:

横向分别率为2K量级,每个像素时钟输出32个像素点的CMOS图像传感器。如,LUXIMA的LUX2810、LUX2100;E2V的Flash 2K。FPGA资源消耗如下:

横向分别率为4K量级,每个像素时钟输出64个像素点的CMOS图像传感器。如,E2V的Flash 4K。FPGA资源消耗如下:

若需项目合作请私信详询。

相关推荐
Coding茶水间8 小时前
基于深度学习的螺栓螺母检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
明洞日记9 小时前
【VTK手册027】VTK 颜色连续映射:vtkColorTransferFunction 深度解析与实战指南
c++·图像处理·算法·vtk·图形渲染
欧特克_Glodon14 小时前
C++医学图像处理经典ITK库用法详解<三>: 图像配准模块功能
c++·图像处理·vtk·图像配准
啊阿狸不会拉杆16 小时前
《数字图像处理》第 5 章-图像复原与重建
图像处理·人工智能·算法·matlab·数字图像处理
cici1587418 小时前
MATLAB全景拼接完整实现方案
图像处理·计算机视觉·matlab
才鲸嵌入式18 小时前
香山CPU(国产开源)的 SoC SDK底层程序编写,以及其它开源SoC芯片介绍
c语言·单片机·嵌入式·arm·cpu·verilog·fpga
再__努力1点20 小时前
【76】Haar特征的Adaboost级联人脸检测全解析及python实现
开发语言·图像处理·人工智能·python·算法·计算机视觉·人脸检测
FPGA小迷弟20 小时前
基于FPGA开发高速ADC/DAC芯片笔记
图像处理·fpga开发·数据采集·fpga·adc
Coding茶水间1 天前
基于深度学习的非机动车头盔检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
这张生成的图像能检测吗2 天前
(论文速读)LCT:用于RGB-D突出物体检测的轻型跨模态变压器
图像处理·目标检测·计算机视觉·深度估计·轻量化模型·跨模态融合·rgb-d