目标检测一般性问题

Precision(查准率/精确率)

所有预测为正样本的结果中,预测正确的比率。

复制代码
Precision = TP / (TP + FP)
Recall (查全率/召回率)

所有正样本中被正确预测的比率。

复制代码
Recall = TP / (TP + FN)

| 正样本 | 负样本 |
|----------|--------------------|--------------------|
| 预测为正 | True Positive(TP) | False Positive(FP) |
| 预测为负 | False Negative(FN) | True Negative(TN) |

精确率(precision)和call)计算时不涉及NMS,也就是说如果FP(预测为正样本实际是负样本)或者FN(预测为负样本实际是正样本)比较大也会导致精确率或者召回率低。在OCR的版面分析中比较突出。

PR曲线(Precision-Recall)

Recall为横坐标,Precision为纵坐标组成的曲线,

AP(Average Precision:PR曲线下面积)

AP:在固定IOU下,某一类别所有图片平均精度

mAP(mean Average Precision)

mAP:各类别AP的平均值

IoU(Intersection over Union)

IoU也称作交并比,评价边界框正确性的度量指标,表示detection box(检测框)与ground truth(真实标签)的交集和并集的比值。

mAP@0.5(IoU=0.5)

TP:IoU>0.5 的检测框数量(同一GT只计算一次)

FP:IoU<=0.5 的检测框数量,或检测到同一个 GT 的多余检测框的数量

nms和P,R,map原理及在Yolov5代码中的解析_yolov5p r计算-CSDN博客

mAP@0.5:0.95

表示在不同IoU阈值(从0.5到0.95,步长0.05)上的mAP的平均值

(0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95)

F1-score

是衡量二分类模型精度的一种指标,兼顾了分类模型的精确率和召回率。它是精确率和召回率的调和平均数,最大为1,最小为0。F1-score越大自然说明模型质量更高。但是还要考虑模型的泛化能力,F1-score过高但不能造成过拟合,影响模型的泛化能力

复制代码
F1-score = 2(Precision × Recall )/(Precision + Recall)

(10 封私信 / 30 条消息) F1-score是越大越好吗? - 知乎 (zhihu.com)

相关推荐
天涯海风1 小时前
检索增强生成(RAG) 缓存增强生成(CAG) 生成中检索(RICHES) 知识库增强语言模型(KBLAM)
人工智能·缓存·语言模型
lxmyzzs2 小时前
基于深度学习CenterPoint的3D目标检测部署实战
人工智能·深度学习·目标检测·自动驾驶·ros·激光雷达·3d目标检测
跟着珅聪学java3 小时前
Apache OpenNLP简介
人工智能·知识图谱
AwhiteV3 小时前
利用图数据库高效解决 Text2sql 任务中表结构复杂时占用过多大模型上下文的问题
数据库·人工智能·自然语言处理·oracle·大模型·text2sql
Black_Rock_br3 小时前
AI on Mac, Your Way!全本地化智能代理,隐私与性能兼得
人工智能·macos
☺����4 小时前
实现自己的AI视频监控系统-第一章-视频拉流与解码2
开发语言·人工智能·python·音视频
fsnine4 小时前
机器学习——数据清洗
人工智能·机器学习
一车小面包5 小时前
逻辑回归 从0到1
算法·机器学习·逻辑回归
小猿姐5 小时前
KubeBlocks AI:AI时代的云原生数据库运维探索
数据库·人工智能·云原生·kubeblocks
算法_小学生5 小时前
循环神经网络(RNN, Recurrent Neural Network)
人工智能·rnn·深度学习