目标检测一般性问题

Precision(查准率/精确率)

所有预测为正样本的结果中,预测正确的比率。

复制代码
Precision = TP / (TP + FP)
Recall (查全率/召回率)

所有正样本中被正确预测的比率。

复制代码
Recall = TP / (TP + FN)

| 正样本 | 负样本 |
|----------|--------------------|--------------------|
| 预测为正 | True Positive(TP) | False Positive(FP) |
| 预测为负 | False Negative(FN) | True Negative(TN) |

精确率(precision)和call)计算时不涉及NMS,也就是说如果FP(预测为正样本实际是负样本)或者FN(预测为负样本实际是正样本)比较大也会导致精确率或者召回率低。在OCR的版面分析中比较突出。

PR曲线(Precision-Recall)

Recall为横坐标,Precision为纵坐标组成的曲线,

AP(Average Precision:PR曲线下面积)

AP:在固定IOU下,某一类别所有图片平均精度

mAP(mean Average Precision)

mAP:各类别AP的平均值

IoU(Intersection over Union)

IoU也称作交并比,评价边界框正确性的度量指标,表示detection box(检测框)与ground truth(真实标签)的交集和并集的比值。

mAP@0.5(IoU=0.5)

TP:IoU>0.5 的检测框数量(同一GT只计算一次)

FP:IoU<=0.5 的检测框数量,或检测到同一个 GT 的多余检测框的数量

nms和P,R,map原理及在Yolov5代码中的解析_yolov5p r计算-CSDN博客

mAP@0.5:0.95

表示在不同IoU阈值(从0.5到0.95,步长0.05)上的mAP的平均值

(0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95)

F1-score

是衡量二分类模型精度的一种指标,兼顾了分类模型的精确率和召回率。它是精确率和召回率的调和平均数,最大为1,最小为0。F1-score越大自然说明模型质量更高。但是还要考虑模型的泛化能力,F1-score过高但不能造成过拟合,影响模型的泛化能力

复制代码
F1-score = 2(Precision × Recall )/(Precision + Recall)

(10 封私信 / 30 条消息) F1-score是越大越好吗? - 知乎 (zhihu.com)

相关推荐
腾讯云开发者28 分钟前
腾讯云TVP走进美的,共探智能制造新范式
人工智能
一水鉴天29 分钟前
整体设计 逻辑系统程序 之34七层网络的中台架构设计及链路对应讨论(含 CFR 规则与理 / 事代理界定)
人工智能·算法·公共逻辑
我星期八休息35 分钟前
C++智能指针全面解析:原理、使用场景与最佳实践
java·大数据·开发语言·jvm·c++·人工智能·python
ECT-OS-JiuHuaShan40 分钟前
《元推理框架技术白皮书》,人工智能领域的“杂交水稻“
人工智能·aigc·学习方法·量子计算·空间计算
minhuan44 分钟前
构建AI智能体:六十八、集成学习:从三个臭皮匠到AI集体智慧的深度解析
人工智能·机器学习·adaboost·集成学习·bagging
Cathy Bryant1 小时前
大模型推理(九):采样温度
笔记·神经网络·机器学习·数学建模·transformer
ssshooter1 小时前
MCP 服务 Streamable HTTP 和 SSE 的区别
人工智能·面试·程序员
rengang661 小时前
软件工程新纪元:AI协同编程架构师的修养与使命
人工智能·软件工程·ai编程·ai协同编程架构师
IT_陈寒1 小时前
Python+AI实战:用LangChain构建智能问答系统的5个核心技巧
前端·人工智能·后端
亚马逊云开发者2 小时前
Amazon Bedrock AgentCore Memory:亚马逊云科技的托管记忆解决方案
人工智能