目标检测一般性问题

Precision(查准率/精确率)

所有预测为正样本的结果中,预测正确的比率。

复制代码
Precision = TP / (TP + FP)
Recall (查全率/召回率)

所有正样本中被正确预测的比率。

复制代码
Recall = TP / (TP + FN)

| 正样本 | 负样本 |
|----------|--------------------|--------------------|
| 预测为正 | True Positive(TP) | False Positive(FP) |
| 预测为负 | False Negative(FN) | True Negative(TN) |

精确率(precision)和call)计算时不涉及NMS,也就是说如果FP(预测为正样本实际是负样本)或者FN(预测为负样本实际是正样本)比较大也会导致精确率或者召回率低。在OCR的版面分析中比较突出。

PR曲线(Precision-Recall)

Recall为横坐标,Precision为纵坐标组成的曲线,

AP(Average Precision:PR曲线下面积)

AP:在固定IOU下,某一类别所有图片平均精度

mAP(mean Average Precision)

mAP:各类别AP的平均值

IoU(Intersection over Union)

IoU也称作交并比,评价边界框正确性的度量指标,表示detection box(检测框)与ground truth(真实标签)的交集和并集的比值。

mAP@0.5(IoU=0.5)

TP:IoU>0.5 的检测框数量(同一GT只计算一次)

FP:IoU<=0.5 的检测框数量,或检测到同一个 GT 的多余检测框的数量

nms和P,R,map原理及在Yolov5代码中的解析_yolov5p r计算-CSDN博客

mAP@0.5:0.95

表示在不同IoU阈值(从0.5到0.95,步长0.05)上的mAP的平均值

(0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95)

F1-score

是衡量二分类模型精度的一种指标,兼顾了分类模型的精确率和召回率。它是精确率和召回率的调和平均数,最大为1,最小为0。F1-score越大自然说明模型质量更高。但是还要考虑模型的泛化能力,F1-score过高但不能造成过拟合,影响模型的泛化能力

复制代码
F1-score = 2(Precision × Recall )/(Precision + Recall)

(10 封私信 / 30 条消息) F1-score是越大越好吗? - 知乎 (zhihu.com)

相关推荐
aaaa_a13326 分钟前
李宏毅——self-attention Transformer
人工智能·深度学习·transformer
Coovally AI模型快速验证42 分钟前
MAR-YOLOv9:革新农业检测,YOLOv9的“低调”逆袭
人工智能·神经网络·yolo·计算机视觉·cnn
云和数据.ChenGuang43 分钟前
AI运维工程师技术教程之Linux环境下部署Deepseek
linux·运维·人工智能
cvyoutian1 小时前
解决 PyTorch 大型 wheel 下载慢、超时和反复重下的问题
人工智能·pytorch·python
oliveray1 小时前
解决开放世界目标检测问题——Grounding DINO
人工智能·目标检测·计算机视觉
子非鱼9211 小时前
3 传统序列模型——RNN
人工智能·rnn·深度学习
万俟淋曦1 小时前
【论文速递】2025年第33周(Aug-10-16)(Robotics/Embodied AI/LLM)
人工智能·深度学习·ai·机器人·论文·robotics·具身智能
卢卡上学1 小时前
【AI工具】Coze智能体工作流:5分钟制作10个10w+治愈视频,无需拍摄剪辑
人工智能·音视频·ai视频·ai智能体
玦尘、1 小时前
《统计学习方法》第6章——逻辑斯谛回归与最大熵模型(上)【学习笔记】
机器学习·回归·学习方法
共绩算力1 小时前
Maya多模态模型支持8国语言
人工智能·maya·共绩算力