目标检测一般性问题

Precision(查准率/精确率)

所有预测为正样本的结果中,预测正确的比率。

复制代码
Precision = TP / (TP + FP)
Recall (查全率/召回率)

所有正样本中被正确预测的比率。

复制代码
Recall = TP / (TP + FN)

| 正样本 | 负样本 |
|----------|--------------------|--------------------|
| 预测为正 | True Positive(TP) | False Positive(FP) |
| 预测为负 | False Negative(FN) | True Negative(TN) |

精确率(precision)和call)计算时不涉及NMS,也就是说如果FP(预测为正样本实际是负样本)或者FN(预测为负样本实际是正样本)比较大也会导致精确率或者召回率低。在OCR的版面分析中比较突出。

PR曲线(Precision-Recall)

Recall为横坐标,Precision为纵坐标组成的曲线,

AP(Average Precision:PR曲线下面积)

AP:在固定IOU下,某一类别所有图片平均精度

mAP(mean Average Precision)

mAP:各类别AP的平均值

IoU(Intersection over Union)

IoU也称作交并比,评价边界框正确性的度量指标,表示detection box(检测框)与ground truth(真实标签)的交集和并集的比值。

mAP@0.5(IoU=0.5)

TP:IoU>0.5 的检测框数量(同一GT只计算一次)

FP:IoU<=0.5 的检测框数量,或检测到同一个 GT 的多余检测框的数量

nms和P,R,map原理及在Yolov5代码中的解析_yolov5p r计算-CSDN博客

mAP@0.5:0.95

表示在不同IoU阈值(从0.5到0.95,步长0.05)上的mAP的平均值

(0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95)

F1-score

是衡量二分类模型精度的一种指标,兼顾了分类模型的精确率和召回率。它是精确率和召回率的调和平均数,最大为1,最小为0。F1-score越大自然说明模型质量更高。但是还要考虑模型的泛化能力,F1-score过高但不能造成过拟合,影响模型的泛化能力

复制代码
F1-score = 2(Precision × Recall )/(Precision + Recall)

(10 封私信 / 30 条消息) F1-score是越大越好吗? - 知乎 (zhihu.com)

相关推荐
l1t2 分钟前
利用DeepSeek实现服务器客户端模式的DuckDB原型
服务器·c语言·数据库·人工智能·postgresql·协议·duckdb
寒月霜华1 小时前
机器学习-数据标注
人工智能·机器学习
九章云极AladdinEdu2 小时前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
人工智能训练师3 小时前
Ubuntu22.04如何安装新版本的Node.js和npm
linux·运维·前端·人工智能·ubuntu·npm·node.js
cxr8284 小时前
SPARC方法论在Claude Code基于规则驱动开发中的应用
人工智能·驱动开发·claude·智能体
研梦非凡5 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
幂简集成5 小时前
Realtime API 语音代理端到端接入全流程教程(含 Demo,延迟 280ms)
人工智能·个人开发
龙腾-虎跃5 小时前
FreeSWITCH FunASR语音识别模块
人工智能·语音识别·xcode
智慧地球(AI·Earth)5 小时前
给AI配一台手机+电脑?智谱AutoGLM上线!
人工智能·智能手机·电脑
Godspeed Zhao5 小时前
自动驾驶中的传感器技术46——Radar(7)
人工智能·机器学习·自动驾驶