【大厂AI课学习笔记】【2.2机器学习开发任务实例】(5)数据理解

数据理解,就是理解数据。

理解数据,就是观察数据,获得更多数据的特点。

这里要对数据进行一些处理。

查看样本数据的均值、最大值、最小值、数量、标准差等;

查看更详细的数据分位数信息。

通过观察加深数据理解,为建模做准备。

延伸学习:


数据理解:深入探索与分析

在人工智能和机器学习的项目中,数据理解是至关重要的一步。它涉及到对数据集的深入探索和分析,以揭示数据的内在特性、模式、异常值以及潜在的问题。通过数据理解,我们可以更好地准备数据,为后续的建模工作奠定坚实的基础。

一、数据理解的重要性

数据理解是建模前的必要准备,它能够帮助我们:

  1. 识别数据问题:在数据集中,可能存在缺失值、异常值、重复值或格式错误等问题。通过数据理解,我们可以及时发现这些问题,并采取相应的处理措施。
  2. 了解数据分布:数据的分布特征对于选择合适的模型和算法至关重要。通过查看数据的均值、中位数、众数等统计量,我们可以初步了解数据的集中趋势和离散程度。
  3. 发现潜在关系:在某些情况下,数据集中的不同特征之间可能存在某种关联或依赖关系。通过数据理解,我们可以探索这些潜在关系,为后续的特征工程和模型优化提供线索。
  4. 评估数据质量:数据的质量直接影响模型的性能。通过数据理解,我们可以评估数据的完整性、准确性、一致性和时效性等方面,从而确保输入到模型中的数据是可靠和有效的。

二、数据理解的方法与技巧

在进行数据理解时,我们可以采用以下方法和技巧:

  1. 描述性统计:计算数据的均值、最大值、最小值、标准差等统计量,以了解数据的整体情况。这些统计量可以帮助我们初步判断数据的分布特征、离散程度和异常值情况。

    • 均值:均值是所有数据点的平均值,它反映了数据的中心位置。计算公式为:均值 = (数据1 + 数据2 + ... + 数据n) / n。
    • 最大值与最小值:最大值和最小值分别表示数据集中的最大和最小观测值。它们可以帮助我们了解数据的范围和边界。
    • 标准差:标准差衡量了数据点的离散程度。一个较小的标准差表示数据点比较接近均值,而较大的标准差则表示数据点分布较为分散。
  2. 分位数与箱线图:通过计算数据的分位数(如四分位数、十分位数等),我们可以更详细地了解数据的分布情况。同时,箱线图(Box Plot)是一种可视化工具,它展示了数据的最小值、下四分位数(Q1)、中位数(Q2)、上四分位数(Q3)和最大值,从而帮助我们直观地识别异常值和偏态分布。

箱线图(Boxplot)也称箱须图(Box-whisker Plot)、盒式图、盒状图或箱型图,是一种用作显示一组数据分散情况资料的统计图。因形状如箱子而得名。在各种领域也经常被使用,常见于品质管理。它主要用于反映原始数据分布的特征,还可以进行多组数据分布特征的比 较。箱线图是利用数据中的五个统计量:最小值、第一四分位数、中位数、第三四分位数与最大值来描述数据的一种方法,它也可以粗略地看出数据是否具有有对称性,分布的分散程度等信息,特别可以用于对几个样本的比较。

  1. 数据可视化:利用柱状图、折线图、散点图等可视化工具,我们可以直观地展示数据的分布、趋势和关系。通过对比不同图表中的信息,我们可以发现数据之间的潜在规律和异常现象。

  2. 相关性分析:计算不同特征之间的相关系数(如皮尔逊相关系数、斯皮尔曼秩相关系数等),以评估它们之间的线性关系强度和方向。这有助于我们了解特征之间的相互作用和影响。

  3. 特征工程:在数据理解的过程中,我们可能会发现一些对模型训练有益的新特征。通过特征构造、特征选择和特征转换等技术,我们可以增强数据的表达能力和预测性能。

三、数据理解的实践建议

在实际项目中,为了更好地进行数据理解,我们可以遵循以下建议:

  1. 从简单到复杂:先从基本的统计量和可视化开始,逐步深入到更复杂的分析和挖掘。这样可以帮助我们逐步加深对数据的理解。
  2. 保持好奇心:在探索数据时,要保持开放和好奇的心态。不要过早地做出结论或假设,而是让数据说话。
  3. 注重细节:在查看数据时,要关注每一个细节和异常现象。这些细节可能揭示了数据的重要特征或潜在问题。
  4. 与领域知识结合:在理解数据时,要结合领域知识和实际背景进行分析。这样可以帮助我们更准确地解释数据中的现象和规律。
  5. 持续学习与改进:数据理解是一个持续的过程。随着项目的进展和数据的变化,我们需要不断地更新和改进我们的理解方法和工具。

总之,数据理解是人工智能项目中不可或缺的一环。通过深入探索和分析数据,我们可以为后续的建模工作奠定坚实的基础,从而提高模型的性能和准确性。

相关推荐
卧式纯绿5 分钟前
每日文献(八)——Part one
人工智能·yolo·目标检测·计算机视觉·目标跟踪·cnn
chushiyunen9 分钟前
dom操作笔记、xml和document等
xml·java·笔记
巷95511 分钟前
OpenCV图像形态学:原理、操作与应用详解
人工智能·opencv·计算机视觉
chushiyunen12 分钟前
tomcat使用笔记、启动失败但是未打印日志
java·笔记·tomcat
汇能感知16 分钟前
光谱相机的光谱数据采集原理
经验分享·笔记·科技
人人题39 分钟前
汽车加气站操作工考试答题模板
笔记·职场和发展·微信小程序·汽车·创业创新·学习方法·业界资讯
深蓝易网40 分钟前
为什么制造企业需要用MES管理系统升级改造车间
大数据·运维·人工智能·制造·devops
xiangzhihong81 小时前
Amodal3R ,南洋理工推出的 3D 生成模型
人工智能·深度学习·计算机视觉
小脑斧爱吃鱼鱼1 小时前
鸿蒙项目笔记(1)
笔记·学习·harmonyos
阿linlin1 小时前
OpenCV--图像预处理学习01
opencv·学习·计算机视觉