深度学习之pytorch实现逻辑斯蒂回归

深度学习之pytorch实现逻辑斯蒂回归

解决的问题

logistic 适用于分类问题,这里案例( y为0和1 ,0和 1 分别代表一类)

于解决二分类(0 or 1)问题的机器学习方法,用于估计某种事物的可能性

数学公式

logiatic函数

损失值

代码

也是用y=wx+b的模型来举例,之前的输出y属于实数集合R,现在我们要输出一个一个概率,也就是在区间[0,1]之间。我们就想到需要找出一个映射,把我们之前的输出集合R映射到区间[0,1],他就是函数Sigma,这样我们就轻松的实现了实数集合到0~1之间的映射

python 复制代码
import  torch
import  torch.nn.functional as F
import  numpy as np
import matplotlib.pyplot as plt

x_data = torch.Tensor([[1.0],[2.0],[3.0]])
y_data = torch.Tensor([[0],[0],[1]])

class LinearModel(torch.nn.Module):
    def __init__(self):
        super(LinearModel,self).__init__()
        self.linear = torch.nn.Linear(1,1)
    def forward(self, x):
        y_pred = F.sigmoid(self.linear(x))#这里需要把原来的输出y传给sigmoid,即实现的区间的映射
        return  y_pred

model = LinearModel()

criterion = torch.nn.BCELoss(size_average=False)
optimizer = torch.optim.SGD(model.parameters(),lr=0.01)

for epoch in range(1000):
    y_pred = model(x_data)
    loss = criterion(y_pred,y_data)
    print(epoch,loss.item())

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

x = np.linspace(0,10,200)
x_t = torch.Tensor(x).view(200,1)#将数据变成一个二百行一列的矩阵
y_t = model(x_t)
y = y_t.data.numpy()

plt.plot(x,y)
plt.plot([0,10],[0.5,0.5],c='r')
plt.ylabel('probablility of pass')
plt.xlabel('hours')
plt.grid()#画出网格
plt.show()

与线性回归代码的区别

数据

python 复制代码
x_data = torch.Tensor([[1.0],[2.0],[3.0]])
y_data = torch.Tensor([[0],[0],[1]])

#线性回归
#x_data = torch.Tensor([[1.0],[2.0],[3.0]])
#y_data = torch.Tensor([[2.0],[4.0],[=6.0]])

损失值

ruby 复制代码
criterion = torch.nn.BCELoss(size_average=False)
#线性回归
#criterion = torch.nn.MSELoss(size_average=False)

构造回归的函数

python 复制代码
import torch.nn.functional as F
y_pred = F.sigmoid(self.linear(x))

#线性回归
#y_pred = self.linear(x)

结果分析

部分结果数据

964 1.1182234287261963

965 1.1176648139953613

966 1.1171066761016846

967 1.1165491342544556

968 1.1159923076629639

969 1.1154361963272095

970 1.1148808002471924

971 1.1143261194229126

972 1.113771915435791

973 1.1132186651229858

974 1.1126658916473389

975 1.1121137142181396

976 1.1115622520446777

977 1.1110115051269531

978 1.1104612350463867

979 1.1099116802215576

980 1.1093629598617554

981 1.1088148355484009

982 1.1082673072814941

983 1.1077203750610352

984 1.1071741580963135

985 1.106628656387329

986 1.106083631515503

987 1.105539321899414

988 1.104995846748352

989 1.1044528484344482

990 1.1039104461669922

991 1.1033687591552734

992 1.1028276681900024

993 1.1022872924804688

994 1.1017472743988037

995 1.101208209991455

996 1.1006698608398438

997 1.1001317501068115

998 1.0995947122573853

999 1.0990580320358276

相关推荐
羑悻的小杀马特29 分钟前
OpenCV 引擎:驱动实时应用开发的科技狂飙
人工智能·科技·opencv·计算机视觉
guanshiyishi4 小时前
ABeam 德硕 | 中国汽车市场(2)——新能源车的崛起与中国汽车市场机遇与挑战
人工智能
极客天成ScaleFlash4 小时前
极客天成NVFile:无缓存直击存储性能天花板,重新定义AI时代并行存储新范式
人工智能·缓存
Uzuki4 小时前
AI可解释性 II | Saliency Maps-based 归因方法(Attribution)论文导读(持续更新)
深度学习·机器学习·可解释性
澳鹏Appen5 小时前
AI安全:构建负责任且可靠的系统
人工智能·安全
蹦蹦跳跳真可爱5895 小时前
Python----机器学习(KNN:使用数学方法实现KNN)
人工智能·python·机器学习
视界宝藏库6 小时前
多元 AI 配音软件,打造独特音频体验
人工智能
xinxiyinhe6 小时前
GitHub上英语学习工具的精选分类汇总
人工智能·deepseek·学习英语精选
byxdaz7 小时前
PyTorch中Linear全连接层
pytorch
Start_Present7 小时前
Pytorch 第十二回:循环神经网络——LSTM模型
pytorch·rnn·神经网络·数据分析·lstm