深度学习之pytorch实现逻辑斯蒂回归

深度学习之pytorch实现逻辑斯蒂回归

解决的问题

logistic 适用于分类问题,这里案例( y为0和1 ,0和 1 分别代表一类)

于解决二分类(0 or 1)问题的机器学习方法,用于估计某种事物的可能性

数学公式

logiatic函数

损失值

代码

也是用y=wx+b的模型来举例,之前的输出y属于实数集合R,现在我们要输出一个一个概率,也就是在区间[0,1]之间。我们就想到需要找出一个映射,把我们之前的输出集合R映射到区间[0,1],他就是函数Sigma,这样我们就轻松的实现了实数集合到0~1之间的映射

python 复制代码
import  torch
import  torch.nn.functional as F
import  numpy as np
import matplotlib.pyplot as plt

x_data = torch.Tensor([[1.0],[2.0],[3.0]])
y_data = torch.Tensor([[0],[0],[1]])

class LinearModel(torch.nn.Module):
    def __init__(self):
        super(LinearModel,self).__init__()
        self.linear = torch.nn.Linear(1,1)
    def forward(self, x):
        y_pred = F.sigmoid(self.linear(x))#这里需要把原来的输出y传给sigmoid,即实现的区间的映射
        return  y_pred

model = LinearModel()

criterion = torch.nn.BCELoss(size_average=False)
optimizer = torch.optim.SGD(model.parameters(),lr=0.01)

for epoch in range(1000):
    y_pred = model(x_data)
    loss = criterion(y_pred,y_data)
    print(epoch,loss.item())

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

x = np.linspace(0,10,200)
x_t = torch.Tensor(x).view(200,1)#将数据变成一个二百行一列的矩阵
y_t = model(x_t)
y = y_t.data.numpy()

plt.plot(x,y)
plt.plot([0,10],[0.5,0.5],c='r')
plt.ylabel('probablility of pass')
plt.xlabel('hours')
plt.grid()#画出网格
plt.show()

与线性回归代码的区别

数据

python 复制代码
x_data = torch.Tensor([[1.0],[2.0],[3.0]])
y_data = torch.Tensor([[0],[0],[1]])

#线性回归
#x_data = torch.Tensor([[1.0],[2.0],[3.0]])
#y_data = torch.Tensor([[2.0],[4.0],[=6.0]])

损失值

ruby 复制代码
criterion = torch.nn.BCELoss(size_average=False)
#线性回归
#criterion = torch.nn.MSELoss(size_average=False)

构造回归的函数

python 复制代码
import torch.nn.functional as F
y_pred = F.sigmoid(self.linear(x))

#线性回归
#y_pred = self.linear(x)

结果分析

部分结果数据

964 1.1182234287261963

965 1.1176648139953613

966 1.1171066761016846

967 1.1165491342544556

968 1.1159923076629639

969 1.1154361963272095

970 1.1148808002471924

971 1.1143261194229126

972 1.113771915435791

973 1.1132186651229858

974 1.1126658916473389

975 1.1121137142181396

976 1.1115622520446777

977 1.1110115051269531

978 1.1104612350463867

979 1.1099116802215576

980 1.1093629598617554

981 1.1088148355484009

982 1.1082673072814941

983 1.1077203750610352

984 1.1071741580963135

985 1.106628656387329

986 1.106083631515503

987 1.105539321899414

988 1.104995846748352

989 1.1044528484344482

990 1.1039104461669922

991 1.1033687591552734

992 1.1028276681900024

993 1.1022872924804688

994 1.1017472743988037

995 1.101208209991455

996 1.1006698608398438

997 1.1001317501068115

998 1.0995947122573853

999 1.0990580320358276

相关推荐
学历真的很重要17 分钟前
LangChain V1.0 Context Engineering(上下文工程)详细指南
人工智能·后端·学习·语言模型·面试·职场和发展·langchain
IT=>小脑虎18 分钟前
Python零基础衔接进阶知识点【详解版】
开发语言·人工智能·python
UnderTurrets25 分钟前
A_Survey_on_3D_object_Affordance
pytorch·深度学习·计算机视觉·3d
koo36428 分钟前
pytorch深度学习笔记13
pytorch·笔记·深度学习
黄焖鸡能干四碗28 分钟前
智能制造工业大数据应用及探索方案(PPT文件)
大数据·运维·人工智能·制造·需求分析
高洁0130 分钟前
CLIP 的双编码器架构是如何优化图文关联的?(3)
深度学习·算法·机器学习·transformer·知识图谱
世岩清上35 分钟前
乡村振兴主题展厅本土化材料运用与地域文化施工表达
大数据·人工智能·乡村振兴·展厅
工藤学编程1 小时前
零基础学AI大模型之LangChain智能体执行引擎AgentExecutor
人工智能·langchain
图生生1 小时前
基于AI的商品场景图批量生成方案,助力电商大促效率翻倍
人工智能·ai
说私域1 小时前
短视频私域流量池的变现路径创新:基于AI智能名片链动2+1模式S2B2C商城小程序的实践研究
大数据·人工智能·小程序