OpenCV中inRange函数

在OpenCV中,inRange函数用于根据颜色范围从图像中提取特定的颜色区域。这个函数检查输入图像中的每个像素,如果像素值位于指定的范围内,则在输出图像(或掩码)中对应位置的像素被设置为白色(或者说是255),否则被设置为黑色(0)。这种方法在处理颜色过滤、颜色识别等任务时非常有用。

cpp 复制代码
void inRange(InputArray src, InputArray lowerb, InputArray upperb, OutputArray dst);

src :输入图像,通常是经过颜色空间转换后的图像,比如从BGR转换到HSV颜色空间的图像。
lowerb :颜色范围的下界,使用Scalar类型表示。
upperb :颜色范围的上界,使用Scalar类型表示。
dst:输出图像,是一个二值图像,其中符合颜色范围的像素被设置为255,不符合的被设置为0。

红绿蓝在HSV颜色空间中的范围

在HSV颜色空间中,颜色是通过色调(Hue)、饱和度(Saturation)和亮度(Value)来定义的。不同的颜色在HSV空间中占据不同的范围,这使得HSV成为图像处理中进行颜色分割和识别的一个非常实用的颜色空间。以下是红色、绿色和蓝色在HSV颜色空间中的大致范围:

红色(Red)

色调 (Hue):红色在HSV颜色圆环的两端,因此它的色调值分布在两个区域:0°到10°(接近360°的值也视为红色,因为360°等价于0°)和170°到180°。
饱和度 (Saturation):高饱和度值,大约从50%到100%。
亮度(Value):亮度范围可以很宽,从较暗(约50%)到非常亮(100%)。

绿色(Green)

色调 (Hue):绿色的色调值大约在35°到85°之间。
饱和度 (Saturation):高饱和度值,大约从50%到100%。
亮度(Value):亮度范围同样可以从较暗到非常亮。

蓝色(Blue)

色调 (Hue):蓝色的色调值大约在100°到140°之间。
饱和度 (Saturation):高饱和度值,通常从50%到100%。
亮度(Value):亮度同样可以从较暗到非常亮。

注意事项

这些范围是大致估计 ,实际应用中可能需要根据具体情况进行调整。不同的照明条件和图像质量都可能影响颜色的HSV值。

在实际应用中,经常需要通过实验 来确定最佳的HSV范围,以达到最好的颜色识别或分割效果。

特别是对于红色 ,因为它在HSV色环的两端,处理时可能需要分别考虑两个范围,并将结果合并。

示例1:提取绿色区域

假设有一个需求是从图像中提取绿色区域,首先需要将图像从BGR颜色空间转换到HSV颜色空间,因为HSV颜色空间更适合颜色分割:

cpp 复制代码
void QuickDemo::inrange_demo(Mat &image) {
	Mat hsv;
	cvtColor(image, hsv, COLOR_BGR2HSV);
	Mat mask;
	inRange(hsv, Scalar(35, 43, 46), Scalar(77, 255, 255), mask);
	
	imshow("mask", mask);

示例2:提取红色区域

假设有一个需求是从图像中提取绿色区域,首先需要将图像从BGR颜色空间转换到HSV颜色空间,因为HSV颜色空间更适合颜色分割:

cpp 复制代码
//图像色彩空间转换
void QuickDemo::inrange_demo(Mat &image) {
	Mat hsv;
	cvtColor(image, hsv, COLOR_BGR2HSV);
	Mat mask1, mask2, maskRed;
	//inRange(hsv, Scalar(35, 43, 46), Scalar(77, 255, 255), mask);
	Scalar lower_red1(0, 50, 50);
	Scalar upper_red1(10, 255, 255);
	Scalar lower_red2(170, 50, 50);
	Scalar upper_red2(180, 255, 255);
	

	// 应用第一个红色范围
	inRange(hsv, lower_red1, upper_red1, mask1);
	// 应用第二个红色范围
	inRange(hsv, lower_red2, upper_red2, mask2);

	// 合并两个红色范围的掩码
	bitwise_or(mask1, mask2, maskRed);
	imshow("mask", maskRed);

}

示例3:提取蓝色区域

cpp 复制代码
//图像色彩空间转换
void QuickDemo::inrange_demo(Mat &image) {
	Mat hsv;
	cvtColor(image, hsv, COLOR_BGR2HSV);
	Mat mask;
	inRange(hsv, Scalar(110, 50, 50), Scalar(130, 255, 255), mask);

	imshow("mask", mask);

}

原图

提取绿色掩膜

提取蓝色掩膜

提取红色掩膜

相关推荐
深度学习实战训练营6 分钟前
基于OpenCV的实时年龄与性别识别(支持CPU和GPU)
人工智能·opencv·计算机视觉
智匠MindCraft Al33 分钟前
一站式大语言模型API调用:快速上手教程
人工智能·gpt·ai·语言模型·语音识别
浊酒南街1 小时前
吴恩达深度学习笔记:卷积神经网络(Foundations of Convolutional Neural Networks)2.5-2.6
人工智能·深度学习·神经网络
美狐美颜sdk1 小时前
进阶美颜功能技术开发方案:探索视频美颜SDK
人工智能·音视频·直播美颜sdk·第三方美颜sdk·美狐美颜sdk
上理考研周导师1 小时前
【传感器技术】【第1章 传感器与检测技术的理论基础,测量系统,测量分类,误差分析,估计和处理】
人工智能
智能相对论2 小时前
在边缘共行者计划的高纬进击中,浪潮信息拉开边缘智算的时代大幕
人工智能·边缘智算
2的n次方_2 小时前
【机器学习】自动驾驶——智能交通与无人驾驶技术的未来
人工智能·机器学习·自动驾驶
The Open Group2 小时前
企业数字化转型的架构框架选择:多框架对比与TOGAF的应用深度解析
大数据·运维·人工智能·分布式·微服务·架构·数字化转型
sensor_WU2 小时前
【图像处理】多幅不同焦距的同一个物体的平面图象,合成一幅具有立体效果的单幅图像原理(二)
图像处理·人工智能
一颗无畏豆儿2 小时前
常用激活函数总结
人工智能·python·深度学习·机器学习