【Python】OpenCV-实时眼睛疲劳检测与提醒

实时眼睛疲劳检测与提醒

1. 引言

眼睛疲劳对于长时间使用电子设备的人群来说是一个常见的问题。为了帮助用户及时发现眼睛疲劳并采取相应的措施,本文介绍了一个实时眼睛疲劳检测与提醒系统的简单实现。使用了OpenCV、MediaPipe以及Playsound库,通过摄像头捕捉实时图像,检测眼睛疲劳并在需要时播放提示音。

2. 实现

2.1 实时视频显示

首先,通过OpenCV库捕获摄像头实时视频,显示在窗口中。

python 复制代码
import cv2

cap = cv2.VideoCapture(0)
while cap.isOpened():
    ret, frame = cap.read()
    if ret is False:
        break
    cv2.imshow("frame", frame)
    cv2.waitKey(10)

2.2 眼睛疲劳检测

接下来,使用MediaPipe库中的FaceMesh模型,获取面部特征点,从中提取左右眼的特定特征点。通过计算眼睛的EAR(Eye Aspect Ratio),判断眼睛是否闭合。

python 复制代码
import cv2
import mediapipe as mp
import numpy as np

# 初始化FaceMesh
face_mesh = mp.solutions.face_mesh.FaceMesh()

cap = cv2.VideoCapture(0)
sleep_frame_count = 0
while cap.isOpened():
    ret, frame = cap.read()
    if ret is False:
        break
    rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    result = face_mesh.process(rgb_frame)
    if result.multi_face_landmarks:
        for face in result.multi_face_landmarks:
            # 获取眼睛特定特征点
            right_eye_landmark_ids = [362, 385, 387, 263, 373, 380]
            left_eye_landmark_ids = [33, 160, 158, 133, 153, 144]
            right_eye_landmarks = []
            left_eye_landmarks = []
            for id, landmark in enumerate(face.landmark):
                if id in right_eye_landmark_ids:
                    x = int(landmark.x * frame.shape[1])
                    y = int(landmark.y * frame.shape[0])
                    cv2.circle(frame, [x, y], 1, [0, 255, 0])
                    right_eye_landmarks.append(np.array([x, y]))
                if id in left_eye_landmark_ids:
                    x = int(landmark.x * frame.shape[1])
                    y = int(landmark.y * frame.shape[0])
                    cv2.circle(frame, [x, y], 1, [0, 255, 0])
                    left_eye_landmarks.append(np.array([x, y]))

            # 计算眼睛的EAR
            def EAR(landmarks):
                d1 = np.linalg.norm(landmarks[1] - landmarks[5])
                d2 = np.linalg.norm(landmarks[2] - landmarks[4])
                d3 = np.linalg.norm(landmarks[0] - landmarks[3])
                return (d1 + d2) / d3 * 0.5

            left_ear = EAR(left_eye_landmarks)
            right_ear = EAR(right_eye_landmarks)

            # 判断眼睛是否闭合
            if (left_ear + right_ear) / 2 < 0.85:
                sleep_frame_count += 1
                if sleep_frame_count >= 30:
                    sleep_frame_count = 0
                    print("不要睡觉")
                    # 在新线程中播放提示音
                    t = Thread(target=play_sound).start()
    cv2.imshow("frame", frame)
    cv2.waitKey(10)

2.3 提示音播放

当检测到眼睛疲劳时,通过Playsound库在新线程中播放提示音。

python 复制代码
from threading import Thread
from playsound import playsound

def play_sound():
    playsound("tip.mp3")

3. 结论

通过上述代码,展示了一个基于OpenCV、MediaPipe和Playsound的简单实时眼睛疲劳检测与提醒系统。通过面部特征点的获取和EAR的计算,系统能够及时识别用户的眼睛状态,并在需要时通过提示音提醒用户。这个简单而有效的系统可以用于提高长时间使用电子设备的用户对眼睛疲劳的警觉。

提示音下载:https://sc.chinaz.com/yinxiao/230223359280.htm
代码参考源自:Shady的混乱空间

相关推荐
无名之逆14 分钟前
[特殊字符] Hyperlane 框架:高性能、灵活、易用的 Rust 微服务解决方案
运维·服务器·开发语言·数据库·后端·微服务·rust
五指山西23 分钟前
异步框架使用loguru和contextvars实现日志按Id输出
python
小宁爱Python24 分钟前
Python从入门到精通4:计算机网络及TCP网络应用程序开发入门指南
网络·python·tcp/ip·计算机网络
weixin_4424240324 分钟前
Opencv计算机视觉编程攻略-第九节 描述和匹配兴趣点
人工智能·opencv·计算机视觉
Vitalia28 分钟前
⭐算法OJ⭐寻找最短超串【动态规划 + 状态压缩】(C++ 实现)Find the Shortest Superstring
开发语言·c++·算法·动态规划·动态压缩
thinkMoreAndDoMore31 分钟前
深度学习处理文本(5)
人工智能·python·深度学习
最后一个bug38 分钟前
PCI与PCIe接口的通信架构是主从模式吗?
linux·开发语言·arm开发·stm32·嵌入式硬件
落落鱼201339 分钟前
TP6图片操作 Image::open 调用->save()方法时候报错Type is not supported
开发语言
Niuguangshuo41 分钟前
Python 设计模式:外观模式
python·设计模式·外观模式
慕离桑1 小时前
SQL语言的物联网
开发语言·后端·golang