【Python】OpenCV-实时眼睛疲劳检测与提醒

实时眼睛疲劳检测与提醒

1. 引言

眼睛疲劳对于长时间使用电子设备的人群来说是一个常见的问题。为了帮助用户及时发现眼睛疲劳并采取相应的措施,本文介绍了一个实时眼睛疲劳检测与提醒系统的简单实现。使用了OpenCV、MediaPipe以及Playsound库,通过摄像头捕捉实时图像,检测眼睛疲劳并在需要时播放提示音。

2. 实现

2.1 实时视频显示

首先,通过OpenCV库捕获摄像头实时视频,显示在窗口中。

python 复制代码
import cv2

cap = cv2.VideoCapture(0)
while cap.isOpened():
    ret, frame = cap.read()
    if ret is False:
        break
    cv2.imshow("frame", frame)
    cv2.waitKey(10)

2.2 眼睛疲劳检测

接下来,使用MediaPipe库中的FaceMesh模型,获取面部特征点,从中提取左右眼的特定特征点。通过计算眼睛的EAR(Eye Aspect Ratio),判断眼睛是否闭合。

python 复制代码
import cv2
import mediapipe as mp
import numpy as np

# 初始化FaceMesh
face_mesh = mp.solutions.face_mesh.FaceMesh()

cap = cv2.VideoCapture(0)
sleep_frame_count = 0
while cap.isOpened():
    ret, frame = cap.read()
    if ret is False:
        break
    rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    result = face_mesh.process(rgb_frame)
    if result.multi_face_landmarks:
        for face in result.multi_face_landmarks:
            # 获取眼睛特定特征点
            right_eye_landmark_ids = [362, 385, 387, 263, 373, 380]
            left_eye_landmark_ids = [33, 160, 158, 133, 153, 144]
            right_eye_landmarks = []
            left_eye_landmarks = []
            for id, landmark in enumerate(face.landmark):
                if id in right_eye_landmark_ids:
                    x = int(landmark.x * frame.shape[1])
                    y = int(landmark.y * frame.shape[0])
                    cv2.circle(frame, [x, y], 1, [0, 255, 0])
                    right_eye_landmarks.append(np.array([x, y]))
                if id in left_eye_landmark_ids:
                    x = int(landmark.x * frame.shape[1])
                    y = int(landmark.y * frame.shape[0])
                    cv2.circle(frame, [x, y], 1, [0, 255, 0])
                    left_eye_landmarks.append(np.array([x, y]))

            # 计算眼睛的EAR
            def EAR(landmarks):
                d1 = np.linalg.norm(landmarks[1] - landmarks[5])
                d2 = np.linalg.norm(landmarks[2] - landmarks[4])
                d3 = np.linalg.norm(landmarks[0] - landmarks[3])
                return (d1 + d2) / d3 * 0.5

            left_ear = EAR(left_eye_landmarks)
            right_ear = EAR(right_eye_landmarks)

            # 判断眼睛是否闭合
            if (left_ear + right_ear) / 2 < 0.85:
                sleep_frame_count += 1
                if sleep_frame_count >= 30:
                    sleep_frame_count = 0
                    print("不要睡觉")
                    # 在新线程中播放提示音
                    t = Thread(target=play_sound).start()
    cv2.imshow("frame", frame)
    cv2.waitKey(10)

2.3 提示音播放

当检测到眼睛疲劳时,通过Playsound库在新线程中播放提示音。

python 复制代码
from threading import Thread
from playsound import playsound

def play_sound():
    playsound("tip.mp3")

3. 结论

通过上述代码,展示了一个基于OpenCV、MediaPipe和Playsound的简单实时眼睛疲劳检测与提醒系统。通过面部特征点的获取和EAR的计算,系统能够及时识别用户的眼睛状态,并在需要时通过提示音提醒用户。这个简单而有效的系统可以用于提高长时间使用电子设备的用户对眼睛疲劳的警觉。

提示音下载:https://sc.chinaz.com/yinxiao/230223359280.htm
代码参考源自:Shady的混乱空间

相关推荐
小_太_阳13 分钟前
Scala_【2】变量和数据类型
开发语言·后端·scala·intellij-idea
直裾16 分钟前
scala借阅图书保存记录(三)
开发语言·后端·scala
老刘莱国瑞21 分钟前
STM32 与 AS608 指纹模块的调试与应用
python·物联网·阿里云
湫ccc23 分钟前
《Opencv》基础操作详解(3)
人工智能·opencv·计算机视觉
唐 城37 分钟前
curl 放弃对 Hyper Rust HTTP 后端的支持
开发语言·http·rust
一只敲代码的猪1 小时前
Llama 3 模型系列解析(一)
大数据·python·llama
Hello_WOAIAI2 小时前
批量将 Word 文件转换为 HTML:Python 实现指南
python·html·word
winfredzhang2 小时前
使用Python开发PPT图片提取与九宫格合并工具
python·powerpoint·提取·九宫格·照片
矩阵推荐官hy147622 小时前
短视频矩阵系统种类繁多,应该如何对比选择?
人工智能·python·矩阵·流量运营
测试19982 小时前
外包干了2年,技术退步明显....
自动化测试·软件测试·python·功能测试·测试工具·面试·职场和发展