参考链接:https://github.com/jm199504/Financial-Knowledge-Graphs/tree/master
python
from pandas import DataFrame
from py2neo import Graph,Node,Relationship,NodeMatcher
import pandas as pd
import numpy as np
import os
# 连接Neo4j数据库
from py2neo import Graph, Node, Relationship, walk, NodeMatcher, RelationshipMatcher
import pandas as pd
import json
# 连接数据库 输入地址、用户名、密码
from py2neo import Graph
# 使用包含用户名和密码的 URI 连接到数据库
uri = "http://neo4j:neo4j@localhost:7474"
graph = Graph(uri)
python
a = Node('Person',name='Tom')
graph.create(a)
b = Node('Person',name='Bob')
graph.create(b)
# 创建关系例子
r = Relationship(a,'KNOWS',b)
graph.create(r)
# 读取节点信息
node = DataFrame(graph.run('MATCH (n:`Person`) RETURN n LIMIT 25'))
# print(node)
# 读取关系信息
relation = DataFrame(graph.run('MATCH (n:`Person`)-[r]->(m:`Person`) return n,m,type(r)'))
# print(relation)
# 删除所有节点
graph.run('MATCH (n) OPTIONAL MATCH (n)-[r]-() DELETE n,r')
(No data)
python
# 读取数据
stock = pd.read_csv('stock_basic.csv',encoding="gbk")
holder = pd.read_csv('stock_holders.csv',encoding="gbk")
concept_num = pd.read_csv('concept.csv',encoding="gbk")
concept = pd.read_csv('stock_concept.csv',encoding="gbk")
sh = pd.read_csv('sh.csv')
sz = pd.read_csv('sz.csv')
corr = pd.read_csv('corr.csv')
python
stock.head()
| | Unnamed: 0 | TS代码 | 股票代码 | 股票名称 | 行业 |
| 0 | 0 | 000001.SZ | 1 | 平安银行 | 银行 |
| 1 | 1 | 000002.SZ | 2 | 万科A | 全国地产 |
| 2 | 2 | 000004.SZ | 4 | 国华网安 | 互联网 |
| 3 | 3 | 000005.SZ | 5 | 世纪星源 | 环境保护 |
4 | 4 | 000006.SZ | 6 | 深振业A | 区域地产 |
---|
python
holder.head()
| | Unnamed: 0 | ts_code | ann_date | end_date | holder_name | hold_amount | hold_ratio |
| 0 | 0 | 000001.SZ | 20190307 | 20181231 | 新华人寿保险股份有限公司-分红-个人分红-018L-FH002深 | 4.960350e+07 | 0.29 |
| 1 | 1 | 000001.SZ | 20190307 | 20181231 | 中国平安保险(集团)股份有限公司-集团本级-自有资金 | 8.510493e+09 | 49.56 |
| 2 | 2 | 000001.SZ | 20190307 | 20181231 | 中国平安人寿保险股份有限公司-自有资金 | 1.049463e+09 | 6.11 |
| 3 | 3 | 000001.SZ | 20190307 | 20181231 | 香港中央结算有限公司(陆股通) | 4.307515e+08 | 2.51 |
4 | 4 | 000001.SZ | 20190307 | 20181231 | 中国证券金融股份有限公司 | 4.292327e+08 | 2.50 |
---|
python
concept_num.head()
| | Unnamed: 0 | code | name | src |
| 0 | 0 | TS0 | 密集调研 | ts |
| 1 | 1 | TS1 | 南北船合并 | ts |
| 2 | 2 | TS2 | 5G | ts |
| 3 | 3 | TS3 | 机场 | ts |
4 | 4 | TS4 | 高价股 | ts |
---|
python
concept.head()
| | Unnamed: 0 | id | concept_name | ts_code | name |
| 0 | 0 | TS0 | 密集调研 | 000301.SZ | 东方盛虹 |
| 1 | 1 | TS0 | 密集调研 | 000401.SZ | 冀东水泥 |
| 2 | 2 | TS0 | 密集调研 | 000932.SZ | 华菱钢铁 |
| 3 | 3 | TS0 | 密集调研 | 002013.SZ | 中航机电 |
4 | 4 | TS0 | 密集调研 | 002106.SZ | 莱宝高科 |
---|
python
sh.head()
| | ts_code | hs_type | in_date | out_date | is_new |
| 0 | 601628.SH | SH | 20141117 | NaN | 1 |
| 1 | 601099.SH | SH | 20141117 | NaN | 1 |
| 2 | 601808.SH | SH | 20141117 | NaN | 1 |
| 3 | 601107.SH | SH | 20141117 | NaN | 1 |
4 | 601880.SH | SH | 20141117 | NaN | 1 |
---|
python
sz.head()
| | ts_code | hs_type | in_date | out_date | is_new |
| 0 | 002910.SZ | SZ | 20171114 | NaN | 1 |
| 1 | 000016.SZ | SZ | 20180102 | NaN | 1 |
| 2 | 001872.SZ | SZ | 20180102 | NaN | 1 |
| 3 | 000040.SZ | SZ | 20180102 | NaN | 1 |
4 | 000401.SZ | SZ | 20180102 | NaN | 1 |
---|
python
corr.head()
| | Unnamed: 0 | s1 | s2 | corr |
| 0 | 0 | 000001.SZ. | 000001.SZ. | 1.000000 |
| 1 | 1 | 000001.SZ. | 000002.SZ. | 0.648945 |
| 2 | 2 | 000001.SZ. | 000005.SZ. | 0.342920 |
| 3 | 3 | 000001.SZ. | 000009.SZ. | 0.297213 |
4 | 4 | 000001.SZ. | 000010.SZ. | 0.186165 |
---|
python
# 数据预处理
stock['行业'] = stock['行业'].fillna('未知')
holder = holder.drop_duplicates(subset=None, keep='first', inplace=False)
python
# 创建实体(概念、股票、股东、股通)
sz = Node('深股通',名字='深股通')
graph.create(sz)
sh = Node('沪股通',名字='沪股通')
graph.create(sh)
for i in concept_num.values:
a = Node('概念',概念代码=i[1],概念名称=i[2])
# print('概念代码:'+str(i[1]),'概念名称:'+str(i[2]))
graph.create(a)
for i in stock.values:
a = Node('股票',TS代码=i[1],股票名称=i[3],行业=i[4])
# print('TS代码:'+str(i[1]),'股票名称:'+str(i[3]),'行业:'+str(i[4]))
graph.create(a)
for i in holder.values:
a = Node('股东',TS代码=i[0],股东名称=i[1],持股数量=i[2],持股比例=i[3])
# print('TS代码:'+str(i[0]),'股东名称:'+str(i[1]),'持股数量:'+str(i[2]))
graph.create(a)
python
# 创建关系(股票-股东、股票-概念、股票-公告、股票-股通)
matcher = NodeMatcher(graph)
for i in holder.values:
a = matcher.match("股票",TS代码=i[0]).first()
b = matcher.match("股东",TS代码=i[0])
for j in b:
r = Relationship(j,'参股',a)
graph.create(r)
print('TS',str(i[0]))
for i in concept.values:
a = matcher.match("股票",TS代码=i[3]).first()
b = matcher.match("概念",概念代码=i[1]).first()
if a == None or b == None:
continue
r = Relationship(a,'概念属于',b)
graph.create(r)
python