Latent Diffusion Models / Stable Diffusion(LDM)

High-Resolution Image Synthesis with Latent Diffusion Models (CVPR 2022)
https://arxiv.org/abs/2112.10752
latent-diffusion
stable-diffusion

cross-attention(用于多模态任务)

**Cross-attention vs Self-attention:**Cross-attention的输入来自不同的序列,Self-attention的输入来自同序列,也就是所谓的输入不同,但是除此之外,基本一致。

假设有文本数据和图像数据:

1.文本通过一个Transformer编码器处理,输出作为查询q向量。

2.图像通过CNN处理,输出经过线性变换生成键k和值v向量。

3.计算文本查询向量q与图像键向量k的点积,得到注意力分数。

4.使用这些分数对图像的值向量v进行加权,生成最终输出。


DDPM和LDM的区别和共同点

LDM基本思路:【论文将这个方法称之为感知压缩(Perceptual Compression)】 :在AutoEncoder的编码器 E 对图片进行压缩 ==> 然后在潜在表示空间上做diffusion操作 ==> 最后再用解码器 D 恢复到原始像素空间

**回顾DDPM:**Diffusion Model(DDPM)训练过程就是训练UNet预测每一步的noise,从而逐步还原原始图像。原始图像空间的Diffusion Model目标函数如下:

共同点 :这里函数 的参数使用神经网络UNet拟合,UNet在DDPM和LDM中的作用都是预测噪声。

区别:

  1. 加入Autoencoder(上图中左侧红色部分),使得扩散过程在latent space下,提高图像生成的效率;

  2. 加入条件机制,能够使用其他模态的数据控制图像的生成(上图中右侧灰色部分),其中条件生成控制通过Attention(上图中间部分QKV)机制实现。


论文贡献

  • Diffusion model相比GAN可以取得更好的图片生成效果,然而该模型是一种自回归模型,需要反复迭代计算,因此训练和推理代价都很高。论文提出一种在潜在表示空间(latent space)上进行diffusion过程的方法,从而能够大大减少计算复杂度,同时也能达到十分不错的图片生成效果。
  • 相比于其它空间压缩方法,论文提出的方法可以生成更细致的图像,并且在高分辨率图片生成任务(如风景图生成,百万像素图像)上表现得也很好。
  • 论文将该模型在无条件图片生成(unconditional image synthesis), 图片修复(inpainting),图片超分(super-resolution)任务上进行了实验,都取得了不错的效果。
  • 论文还提出了cross-attention的方法来实现多模态训练,使得条件图片生成任务也可以实现。论文中提到的条件图片生成任务包括类别条件图片生成(class-condition), 文图生成(text-to-image), 布局条件图片生成(layout-to-image)。这也为日后Stable Diffusion的开发奠定了基础。

使用Autoencoder减少需要的算力(感知压缩

为了降低训练扩散模型的算力,LDMs使用一个Autoencoder去学习能尽量表达原始image space的低维空间表达(latent embedding),这样可以大大减少需要的算力。

自编码器的方法有几个优点:

  1. 通过离开高维图像空间,获得计算效率高得多的diffusion models,因为采样是在低维空间上进行的。
  2. 利用了从其UNet架构[71]继承而来的diffusion models的归纳偏差,这使它们对具有空间结构的数据特别有效,从而减轻了对之前方法所要求的激进的、降低质量的压缩水平的需求。
  3. 得到了通用的压缩模型,其潜空间可用于训练多个生成模型,也可用于其他下游应用,如单图像片段引导的合成。

Latent Diffusion Models整体框架如上图,首先需要训练好一个自编码模型(AutoEncoder,包括一个编码器 E 和一个解码器 D )。这样一来,我们就可以利用编码器对图片进行压缩,然后在潜在表示空间上做diffusion操作,最后我们再用解码器恢复到原始像素空间即可,论文将这个方法称之为感知压缩(Perceptual Compression)。个人认为这种将高维特征压缩到低维,然后在低维空间上进行操作的方法具有普适性,可以很容易推广到文本、音频、视频等领域。

在潜在表示空间上做diffusion操作其主要过程和标准的扩散模型没有太大的区别,所用到的扩散模型的具体实现为 time-conditional UNet。但是有一个重要的地方是论文为diffusion操作引入了条件机制(Conditioning Mechanisms),通过cross-attention的方式来实现多模态训练,使得条件图片生成任务也可以实现。

下面我们针对感知压缩、扩散模型、条件机制的具体细节进行展开。

条件图像生成器

DDPM的UNet可以根据当前采样的t预测noise,但没有引入其他额外条件。但是LDM实现了"以文生图","以图生图"等任务,就是因为LDM在预测noise的过程中加入了条件机制,即通过一个编码器(encoder)将条件和Unet连接起来。

将条件嵌入UNet中

这里引入一个新的encoder E(这个是用于条件编码的encoder,和上面提到的用于降维的是不同的)来将条件 y 映射到 T(y)

LDM训练阶段

训练阶段每个模块之间的交互如图:

LDM推理阶段

一文读懂Stable Diffusion 论文原理+代码超详细解读 - 知乎

相关推荐
wei_shuo1 天前
GpuGeek 实操指南:So-VITS-SVC 语音合成与 Stable Diffusion 文生图双模型搭建,融合即梦 AI 的深度实践
人工智能·stable diffusion·gpu算力·gpuseek
这是一个懒人3 天前
Stable Diffusion WebUI 插件大全:功能详解与下载地址
stable diffusion
浪淘沙jkp3 天前
AI大模型学习十八、利用Dify+deepseekR1 +本地部署Stable Diffusion搭建 AI 图片生成应用
人工智能·stable diffusion·agent·dify·ollama·deepseek
Icoolkj4 天前
深入了解 Stable Diffusion:AI 图像生成的奥秘
人工智能·stable diffusion
这是一个懒人5 天前
mac 快速安装stable diffusion webui
macos·stable diffusion
璇转的鱼5 天前
Stable Diffusion进阶之Controlnet插件使用
人工智能·ai作画·stable diffusion·aigc·ai绘画
AloneCat20126 天前
stable Diffusion模型结构
stable diffusion
西西弗Sisyphus6 天前
Stable Diffusion XL 文生图
stable diffusion
霍志杰7 天前
stable-diffusion windows本地部署
windows·stable diffusion
昨日之日20067 天前
ACE-Step - 20秒生成4分钟完整歌曲,音乐界的Stable Diffusion,支持50系显卡 本地一键整合包下载
计算机视觉·stable diffusion·音视频