智能传感器阅读笔记-物联网用智能传感器技术的发展重点

物联网用智能传感器技术的发展重点包含边缘计算算法优化、身份认证算法优化和能量采集技术。

图1 物联网用智能传感器技术的发展重点

边缘计算算法优化

边缘计算是指在靠近物或数据源头的一侧(传感器侧),采用集检测、计算、存储、通信功能于一体的平台,为终端用户提供实时、动态和智能的计算服务。

智能传感器能够在单点上准确感知物理量或化学量,但在多维状态下相对困难。例如,在进行环境测量时,特征参数广泛分布且具有时空相关性,仅靠一两个参数难以实现对目标特性的识别,多参数智能传感器在数据处理中,利用边缘计算数据融合技术对目标进行识别和判断,对广域物联网的海量数据来说具有重要意义,既减少了网络开销,又提高了系统的实时性。因此,需要重点提高边缘计算算法的实时性、识别率。

边缘计算是在传感器端进行智能计算,而云计算是在云端进行计算,两者的差异体现在多源异构数据处理、资源浪费、资源限制、安全和隐私保护等方面。边缘计算在具有低时延、高带宽、高可靠性、海量连接、异构汇聚和本地安全隐私保护等特点的应用场景(如智能交通、智慧城市和智能家居等)中,存在突出优势。

边缘计算可以实时进行数据处理和分析,使数据处理更靠近源头,可以缩短延时,使应用程序的运行更高效、快速;边缘计算可以减少网络流量,随着物联网传感器数量的增加,数据生成速度成倍提高,导致网络带宽受限,成为数据传输瓶颈;边缘计算可以保障数据安全,保护用户隐私。物联网的原始数据涉及个人隐私,传统的云计算模式需要将原始数据上传至云计算中心,用户隐私泄露的风险较高。

身份认证算法优化

物联网多采用无线通信技术,数据容易被其他系统接收,必须通过特定的身份认证协议来确保数据传输的可靠性。身份认证需要密钥,可以通过优化来确定密钥,使其既简单又难以破解。

能量采集技术

大多数物联网应用无法为传感器提供能量,通常由电池供电,但在很多需要长期值守的场合难以实现。因此,需要减少智能传感器的功耗并充分利用空间中的能量。

可以将环境中的能量(如振动能、太阳能、热能、射频能等)转化为电能,供传感器使用,实现传感器能量自给。

振动能采集将周围环境中的振动能转化为电能,主要包括压电式、电磁式和静电式等。

太阳能采集将太阳能或光能转换为电能,可以解决不可再生资源枯竭、能源紧缺、环境污染等问题。

热能来源广,包括物体发出的热量、机械工作散发的热量和空气中的热量等。热能采集将环境温差转化为电势,从而将热源中的废热转化为电能。

射频能采集通过天线接收周围环境中的射频能,并将其转化为电源能量。

相关推荐
Allen_LVyingbo26 分钟前
数智读书笔记系列035《未来医疗:医疗4.0引领第四次医疗产业变革》
人工智能·经验分享·笔记·健康医疗
zzc92131 分钟前
时频图数据集更正程序,去除坐标轴白边及调整对应的标签值
人工智能·深度学习·数据集·标签·时频图·更正·白边
isNotNullX32 分钟前
什么是数据分析?常见方法全解析
大数据·数据库·数据仓库·人工智能·数据分析
riveting42 分钟前
明远智睿H618:开启多场景智慧生活新时代
人工智能·嵌入式硬件·智能硬件·lga封装·3506
夜阑卧听风吹雨,铁马冰河入梦来1 小时前
Spring AI 阿里巴巴学习
人工智能·学习·spring
c7691 小时前
【文献笔记】Automatic Chain of Thought Prompting in Large Language Models
人工智能·笔记·语言模型·论文笔记
Blossom.1182 小时前
机器学习在智能供应链中的应用:需求预测与物流优化
人工智能·深度学习·神经网络·机器学习·计算机视觉·机器人·语音识别
Gyoku Mint2 小时前
深度学习×第4卷:Pytorch实战——她第一次用张量去拟合你的轨迹
人工智能·pytorch·python·深度学习·神经网络·算法·聚类
zzywxc7872 小时前
AI大模型的技术演进、流程重构、行业影响三个维度的系统性分析
人工智能·重构
点控云2 小时前
智能私域运营中枢:从客户视角看 SCRM 的体验革新与价值重构
大数据·人工智能·科技·重构·外呼系统·呼叫中心