智能传感器阅读笔记-物联网用智能传感器技术的发展重点

物联网用智能传感器技术的发展重点包含边缘计算算法优化、身份认证算法优化和能量采集技术。

图1 物联网用智能传感器技术的发展重点

边缘计算算法优化

边缘计算是指在靠近物或数据源头的一侧(传感器侧),采用集检测、计算、存储、通信功能于一体的平台,为终端用户提供实时、动态和智能的计算服务。

智能传感器能够在单点上准确感知物理量或化学量,但在多维状态下相对困难。例如,在进行环境测量时,特征参数广泛分布且具有时空相关性,仅靠一两个参数难以实现对目标特性的识别,多参数智能传感器在数据处理中,利用边缘计算数据融合技术对目标进行识别和判断,对广域物联网的海量数据来说具有重要意义,既减少了网络开销,又提高了系统的实时性。因此,需要重点提高边缘计算算法的实时性、识别率。

边缘计算是在传感器端进行智能计算,而云计算是在云端进行计算,两者的差异体现在多源异构数据处理、资源浪费、资源限制、安全和隐私保护等方面。边缘计算在具有低时延、高带宽、高可靠性、海量连接、异构汇聚和本地安全隐私保护等特点的应用场景(如智能交通、智慧城市和智能家居等)中,存在突出优势。

边缘计算可以实时进行数据处理和分析,使数据处理更靠近源头,可以缩短延时,使应用程序的运行更高效、快速;边缘计算可以减少网络流量,随着物联网传感器数量的增加,数据生成速度成倍提高,导致网络带宽受限,成为数据传输瓶颈;边缘计算可以保障数据安全,保护用户隐私。物联网的原始数据涉及个人隐私,传统的云计算模式需要将原始数据上传至云计算中心,用户隐私泄露的风险较高。

身份认证算法优化

物联网多采用无线通信技术,数据容易被其他系统接收,必须通过特定的身份认证协议来确保数据传输的可靠性。身份认证需要密钥,可以通过优化来确定密钥,使其既简单又难以破解。

能量采集技术

大多数物联网应用无法为传感器提供能量,通常由电池供电,但在很多需要长期值守的场合难以实现。因此,需要减少智能传感器的功耗并充分利用空间中的能量。

可以将环境中的能量(如振动能、太阳能、热能、射频能等)转化为电能,供传感器使用,实现传感器能量自给。

振动能采集将周围环境中的振动能转化为电能,主要包括压电式、电磁式和静电式等。

太阳能采集将太阳能或光能转换为电能,可以解决不可再生资源枯竭、能源紧缺、环境污染等问题。

热能来源广,包括物体发出的热量、机械工作散发的热量和空气中的热量等。热能采集将环境温差转化为电势,从而将热源中的废热转化为电能。

射频能采集通过天线接收周围环境中的射频能,并将其转化为电源能量。

相关推荐
kk哥88992 小时前
从数据分析到深度学习!Anaconda3 2025 全流程开发平台,安装步骤
人工智能
陈天伟教授3 小时前
基于学习的人工智能(3)机器学习基本框架
人工智能·学习·机器学习·知识图谱
搞科研的小刘选手4 小时前
【厦门大学主办】第六届计算机科学与管理科技国际学术会议(ICCSMT 2025)
人工智能·科技·计算机网络·计算机·云计算·学术会议
fanstuck4 小时前
深入解析 PyPTO Operator:以 DeepSeek‑V3.2‑Exp 模型为例的实战指南
人工智能·语言模型·aigc·gpu算力
萤丰信息5 小时前
智慧园区能源革命:从“耗电黑洞”到零碳样本的蜕变
java·大数据·人工智能·科技·安全·能源·智慧园区
世洋Blog5 小时前
更好的利用ChatGPT进行项目的开发
人工智能·unity·chatgpt
serve the people8 小时前
机器学习(ML)和人工智能(AI)技术在WAF安防中的应用
人工智能·机器学习
0***K8928 小时前
前端机器学习
人工智能·机器学习
陈天伟教授9 小时前
基于学习的人工智能(5)机器学习基本框架
人工智能·学习·机器学习