智能传感器阅读笔记-物联网用智能传感器技术的发展重点

物联网用智能传感器技术的发展重点包含边缘计算算法优化、身份认证算法优化和能量采集技术。

图1 物联网用智能传感器技术的发展重点

边缘计算算法优化

边缘计算是指在靠近物或数据源头的一侧(传感器侧),采用集检测、计算、存储、通信功能于一体的平台,为终端用户提供实时、动态和智能的计算服务。

智能传感器能够在单点上准确感知物理量或化学量,但在多维状态下相对困难。例如,在进行环境测量时,特征参数广泛分布且具有时空相关性,仅靠一两个参数难以实现对目标特性的识别,多参数智能传感器在数据处理中,利用边缘计算数据融合技术对目标进行识别和判断,对广域物联网的海量数据来说具有重要意义,既减少了网络开销,又提高了系统的实时性。因此,需要重点提高边缘计算算法的实时性、识别率。

边缘计算是在传感器端进行智能计算,而云计算是在云端进行计算,两者的差异体现在多源异构数据处理、资源浪费、资源限制、安全和隐私保护等方面。边缘计算在具有低时延、高带宽、高可靠性、海量连接、异构汇聚和本地安全隐私保护等特点的应用场景(如智能交通、智慧城市和智能家居等)中,存在突出优势。

边缘计算可以实时进行数据处理和分析,使数据处理更靠近源头,可以缩短延时,使应用程序的运行更高效、快速;边缘计算可以减少网络流量,随着物联网传感器数量的增加,数据生成速度成倍提高,导致网络带宽受限,成为数据传输瓶颈;边缘计算可以保障数据安全,保护用户隐私。物联网的原始数据涉及个人隐私,传统的云计算模式需要将原始数据上传至云计算中心,用户隐私泄露的风险较高。

身份认证算法优化

物联网多采用无线通信技术,数据容易被其他系统接收,必须通过特定的身份认证协议来确保数据传输的可靠性。身份认证需要密钥,可以通过优化来确定密钥,使其既简单又难以破解。

能量采集技术

大多数物联网应用无法为传感器提供能量,通常由电池供电,但在很多需要长期值守的场合难以实现。因此,需要减少智能传感器的功耗并充分利用空间中的能量。

可以将环境中的能量(如振动能、太阳能、热能、射频能等)转化为电能,供传感器使用,实现传感器能量自给。

振动能采集将周围环境中的振动能转化为电能,主要包括压电式、电磁式和静电式等。

太阳能采集将太阳能或光能转换为电能,可以解决不可再生资源枯竭、能源紧缺、环境污染等问题。

热能来源广,包括物体发出的热量、机械工作散发的热量和空气中的热量等。热能采集将环境温差转化为电势,从而将热源中的废热转化为电能。

射频能采集通过天线接收周围环境中的射频能,并将其转化为电源能量。

相关推荐
汽车仪器仪表相关领域2 分钟前
70A大电流+三档电压可调:Midtronics MSP-070系列电源充电器汽车ECU刷新与电池维护实战全解
人工智能·功能测试·单元测试·汽车·可用性测试
陆研一4 分钟前
Clawdbot:Mac mini 卖爆背后的 AI 代理革命
人工智能·ai·chatgpt
小程故事多_8010 分钟前
穿透 AI 智能面纱:三大高危漏洞(RCE/SSRF/XSS)的攻防博弈与全生命周期防护
前端·人工智能·aigc·xss
小咖自动剪辑10 分钟前
ChatTTS本地离线版:高品质AI文字转语音工具完全指南
人工智能
Deepoch13 分钟前
Deepoc具身大模型开发板:赋能电厂巡检机器人,筑牢能源安全防线
人工智能·科技·机器人·巡检·具身模型·deepoc·电厂巡检
zhangfeng113317 分钟前
华为云ModelArts「大模型部署 & 微调」指南
人工智能·华为云
机器视觉的发动机19 分钟前
波士顿动力机器人技术全解析从四足Spot到人形Atlas的机器人革命
大数据·人工智能·深度学习·机器人·视觉检测·机器视觉
工业引擎Robot22 分钟前
安川机器人-三种原点位置详解
机器人
HyperAI超神经25 分钟前
软银/英伟达/红杉资本/贝佐斯等参投,机器人初创公司Skild AI融资14亿美元,打造通用基础模型
人工智能·深度学习·机器学习·机器人·ai编程