苹果AppleMacOs最新Sonoma系统本地训练和推理GPT-SoVITS模型实践

GPT-SoVITS是少有的可以在MacOs系统下训练和推理的TTS项目,虽然在效率上没有办法和N卡设备相提并论,但终归是开发者在MacOs系统构建基于M系列芯片AI生态的第一步。

环境搭建

首先要确保本地环境已经安装好版本大于6.1的FFMPEG软件:

(base) ➜  ~ ffmpeg -version  
ffmpeg version 6.1.1 Copyright (c) 2000-2023 the FFmpeg developers  
built with Apple clang version 15.0.0 (clang-1500.1.0.2.5)  
configuration: --prefix=/opt/homebrew/Cellar/ffmpeg/6.1.1_3 --enable-shared --enable-pthreads --enable-version3 --cc=clang --host-cflags= --host-ldflags='-Wl,-ld_classic' --enable-ffplay --enable-gnutls --enable-gpl --enable-libaom --enable-libaribb24 --enable-libbluray --enable-libdav1d --enable-libharfbuzz --enable-libjxl --enable-libmp3lame --enable-libopus --enable-librav1e --enable-librist --enable-librubberband --enable-libsnappy --enable-libsrt --enable-libssh --enable-libsvtav1 --enable-libtesseract --enable-libtheora --enable-libvidstab --enable-libvmaf --enable-libvorbis --enable-libvpx --enable-libwebp --enable-libx264 --enable-libx265 --enable-libxml2 --enable-libxvid --enable-lzma --enable-libfontconfig --enable-libfreetype --enable-frei0r --enable-libass --enable-libopencore-amrnb --enable-libopencore-amrwb --enable-libopenjpeg --enable-libopenvino --enable-libspeex --enable-libsoxr --enable-libzmq --enable-libzimg --disable-libjack --disable-indev=jack --enable-videotoolbox --enable-audiotoolbox --enable-neon  
libavutil      58. 29.100 / 58. 29.100  
libavcodec     60. 31.102 / 60. 31.102  
libavformat    60. 16.100 / 60. 16.100  
libavdevice    60.  3.100 / 60.  3.100  
libavfilter     9. 12.100 /  9. 12.100  
libswscale      7.  5.100 /  7.  5.100  
libswresample   4. 12.100 /  4. 12.100  
libpostproc    57.  3.100 / 57.  3.100

如果没有安装,可以先升级HomeBrew,随后通过brew命令来安装FFMPEG:

brew cleanup && brew update

安装ffmpeg

brew install ffmpeg

随后需要确保本地已经安装好了conda环境:

(base) ➜  ~ conda info  
  
     active environment : base  
    active env location : /Users/liuyue/anaconda3  
            shell level : 1  
       user config file : /Users/liuyue/.condarc  
 populated config files : /Users/liuyue/.condarc  
          conda version : 23.7.4  
    conda-build version : 3.26.1  
         python version : 3.11.5.final.0  
       virtual packages : __archspec=1=arm64  
                          __osx=14.3=0  
                          __unix=0=0  
       base environment : /Users/liuyue/anaconda3  (writable)  
      conda av data dir : /Users/liuyue/anaconda3/etc/conda  
  conda av metadata url : None  
           channel URLs : https://repo.anaconda.com/pkgs/main/osx-arm64  
                          https://repo.anaconda.com/pkgs/main/noarch  
                          https://repo.anaconda.com/pkgs/r/osx-arm64  
                          https://repo.anaconda.com/pkgs/r/noarch  
          package cache : /Users/liuyue/anaconda3/pkgs  
                          /Users/liuyue/.conda/pkgs  
       envs directories : /Users/liuyue/anaconda3/envs  
                          /Users/liuyue/.conda/envs  
               platform : osx-arm64  
             user-agent : conda/23.7.4 requests/2.31.0 CPython/3.11.5 Darwin/23.3.0 OSX/14.3 aau/0.4.2 s/XQcGHFltC5oP5DK5UVaTDA e/E37crlCLfv4OPFn-Q0QPJw  
                UID:GID : 502:20  
             netrc file : None  
           offline mode : False

如果没有安装过conda,推荐去anaconda官网下载安装包:

https://www.anaconda.com

接着通过conda命令创建并激活基于3.9的Python开发虚拟环境:

conda create -n GPTSoVits python=3.9  
conda activate GPTSoVits

安装依赖以及Mac版本的Torch

克隆GPT-SoVits项目:

https://github.com/RVC-Boss/GPT-SoVITS.git

进入项目:

cd GPT-SoVITS

安装基础依赖:

pip3 install -r requirements.txt

安装基于Mac的Pytorch:

pip3 install --pre torch torchaudio --index-url https://download.pytorch.org/whl/nightly/cpu

随后检查一下mps是否可用:

(base) ➜  ~ conda activate GPTSoVits  
(GPTSoVits) ➜  ~ python  
Python 3.9.18 (main, Sep 11 2023, 08:25:10)   
[Clang 14.0.6 ] :: Anaconda, Inc. on darwin  
Type "help", "copyright", "credits" or "license" for more information.  
>>> import torch  
>>> torch.backends.mps.is_available()   
True  
>>>

如果没有问题,那么直接在项目目录运行命令进入webui即可:

python3 webui.py

到底用CPU还是用MPS

在推理环节上,有个细节非常值得玩味,那就是,到底是MPS效率更高,还是直接用CPU效率更高,理论上当然是MPS了,但其实未必,我们可以修改项目中的config.py文件来强行指定api推理设备:

if torch.cuda.is_available():  
    infer_device = "cuda"  
elif torch.backends.mps.is_available():  
    infer_device = "mps"  
else:  
    infer_device = "cpu"

或者修改inference_webui.py文件来指定页面推理设备:

if torch.cuda.is_available():  
    device = "cuda"  
elif torch.backends.mps.is_available():  
    device = "mps"  
else:  
    device = "cpu"

基于cpu的推理效率:

CPU推理时Python全程内存占用3GB,内存曲线全程绿色,推理速度长时间保持55it/s。

作为对比,使用MPS进行推理,GPU推理时,Python进程内存占用持续稳步上升至14GB,推理速度最高30it/s,偶发1-2it/s。

但实际上,在Pytorch官方的帖子中:

https://github.com/pytorch/pytorch/issues/111517

提到了解决方案,即修改cmakes的编译方式。

修改后推理对比:

cpu推理:  
  
['zh']  
 19%|███████▍                                | 280/1500 [00:12<00:47, 25.55it/s]T2S Decoding EOS [102 -> 382]  
 19%|███████▍                                | 280/1500 [00:12<00:56, 21.54it/s]

gpu推理:  
  
 21%|████████▌                               | 322/1500 [00:08<00:32, 36.46it/s]T2S Decoding EOS [102 -> 426]  
 22%|████████▋                               | 324/1500 [00:08<00:29, 39.26it/s]  

但MPS方式确实有内存泄露的现象。

相关推荐
昨日之日200642 分钟前
Moonshine - 新型开源ASR(语音识别)模型,体积小,速度快,比OpenAI Whisper快五倍 本地一键整合包下载
人工智能·whisper·语音识别
浮生如梦_44 分钟前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
深度学习lover1 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
热爱跑步的恒川2 小时前
【论文复现】基于图卷积网络的轻量化推荐模型
网络·人工智能·开源·aigc·ai编程
API快乐传递者2 小时前
淘宝反爬虫机制的主要手段有哪些?
爬虫·python
阡之尘埃4 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
孙同学要努力6 小时前
全连接神经网络案例——手写数字识别
人工智能·深度学习·神经网络
Eric.Lee20216 小时前
yolo v5 开源项目
人工智能·yolo·目标检测·计算机视觉
其实吧37 小时前
基于Matlab的图像融合研究设计
人工智能·计算机视觉·matlab
丕羽7 小时前
【Pytorch】基本语法
人工智能·pytorch·python