机器学习——正规方程

正规方程的基本介绍

之前我们使用梯度下降算法求代价函数J(θ)的最小值,而梯度下降算法是通过一步步不断地迭代来收敛到全局最小值,如下

而正规方程则是另一种求解J(θ)最小值的方法,并且正规方程不需要通过迭代,而是一次性得到θ的最优值

正规方程的基本概念如下(省略证明过程,记住这个公式就行)

正规方程和梯度下降的对比

  • 梯度下降算法需要不断尝试不同的学习率α,直到选择到一个合适的值,这是一个额外的工作;而正规方程不需要选择学习率;
  • 梯度下降算法是一个迭代算法,需要通过不断地迭代得到θ的最优值;正规方程不需要迭代,基本是一次性可以得到θ的最优值;
  • 梯度下降算法在特征变量很多的情况下,也能运行的很好,哪怕有几百万个特征向量,但是正规方程需要进行矩阵的运算,所以当特征变量很多的时候,正规方程的计算速度不一定比梯度下降的迭代要快;
  • 那么特征数量n多少算大呢?一般如果n超过一万,就考察使用梯度下降或其他算法,如果n在一万以内,可以使用正规方程;
  • 对于线性回归这个特定的模型,正规方程法是一个比梯度下降算法更快的替代算法,但是正规方程不一定适用于其他的学习算法,而梯度下降算法的使用范围比正规方程更广泛。所以还是要根据具体的算法,具体的问题以及特征量的数量来进行最终选择;
相关推荐
深度学习机器5 分钟前
Gemini CLI源码解析:深入工具系统的实现细节
人工智能·llm·agent
格林威6 分钟前
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现路口车辆速度的追踪识别(C#代码UI界面版)
人工智能·深度学习·数码相机·yolo·计算机视觉·c#·视觉检测
恣艺8 分钟前
LeetCode 135:分糖果
算法·leetcode·职场和发展
赵英英俊11 分钟前
Python day34
人工智能·python·深度学习
qq_4112624217 分钟前
主要 bug/问题 以及 修改建议:
前端·人工智能·bug·四博智联·doit
TDengine (老段)21 分钟前
TDengine 中 TDgp 中添加算法模型(异常检测)
java·大数据·数据库·算法·时序数据库·tdengine·涛思数据
背包客研究27 分钟前
使用 Scikit-LLM 进行零样本和少样本分类
人工智能·分类·数据挖掘
2501_9247482437 分钟前
高密度客流识别精度↑32%!陌讯多模态融合算法在智慧交通的实战解析
大数据·人工智能·算法·目标检测·计算机视觉
WeiJingYu.1 小时前
逻辑回归的应用
算法·机器学习·逻辑回归
机器之心1 小时前
全球首个集成云端Agent团队的IDE登场,项目级开发「全程全自动」
人工智能·openai