Hive JDBC

Hive远程模式搭建好之后,可以使用Beeline客户端或JDBC远程访问Hive了

启动HiveServer2服务

bash 复制代码
$ hive --service hiveserver2 &

新建Java Maven项目,在pom.xml中添加以下依赖

XML 复制代码
    <dependencies>
        <dependency>
            <groupId>jdk.tools</groupId>
            <artifactId>jdk.tools</artifactId>
            <version>1.8</version>
            <scope>system</scope>
            <systemPath>${JAVA_HOME}/lib/tools.jar</systemPath>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.hbase/hbase-mapreduce -->
        <dependency>
            <groupId>org.apache.hive</groupId>
            <artifactId>hive-jdbc</artifactId>
            <version>2.3.9</version>
        </dependency>

    </dependencies>

编写JDBC程序

主要分五个步骤:

1.加载JDBC驱动

使用Class.forName()加载JDBC驱动

2.获取连接

使用DriverManager驱动管理类获取Hive连接

3.执行查询

通过Statement对象的executeQuery()方法执行查询命令

4.处理结果集

通过ResultSet对象获取返回的结果。ResultSet是JDBC用于装载返回数据的类。

5.关闭连接

关闭连接,释放资源

java 复制代码
package org.example;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.Statement;

/**
 * Hive JDBC 测试类
 */
public class HiveJDBCTest {
    public static void main(String[] args) throws Exception{
        // 驱动名称
        String driver = "org.apache.hive.jdbc.HiveDriver";
        // 连接地址,默认使用端口10000
        String url = "jdbc:hive2://192.168.153.133:10000/test_db";
        // 用户名(Hadoop集群的登录用户)
        String username = "hadoop";
        // 密码
        String password = "";
        // 1.接在JDBC裙动
        Class.forName(driver);
        // 2.获取连接
        Connection conn = DriverManager.getConnection(url, username, password);
        Statement stmt = conn.createStatement();
        // 3.执行查询
        ResultSet res = stmt.executeQuery("select * from t_user");
        // 4.处理结果
        while(res.next()){
            System.out.println(res.getInt(1) + "\t" + res.getString(2));
        }
        // 5.关闭连接
        res.close();
        stmt.close();
        conn.close();
    }
}
相关推荐
IT研究室2 小时前
大数据毕业设计选题推荐-基于大数据的国内旅游景点游客数据分析系统-Spark-Hadoop-Bigdata
大数据·hadoop·spark·毕业设计·源码·数据可视化·bigdata
Lx3523 小时前
YARN资源调度优化:最大化集群利用率
大数据·hadoop
Leo.yuan3 小时前
不同数据仓库模型有什么不同?企业如何选择适合的数据仓库模型?
大数据·数据库·数据仓库·信息可视化·spark
chat2tomorrow4 小时前
数据采集平台的起源与演进:从ETL到数据复制
大数据·数据库·数据仓库·mysql·低代码·postgresql·etl
isfox20 小时前
Google GFS 深度解析:分布式文件系统的开山之作
大数据·hadoop
鼠鼠我捏,要死了捏1 天前
Hadoop NameNode内存泄漏与GC停顿问题排查与解决方案
hadoop·问题排查·jvm优化
嘉禾望岗5031 天前
Yarn介绍与HA搭建
大数据·hadoop·yarn
IT研究室1 天前
大数据毕业设计选题推荐-基于大数据的国家药品采集药品数据可视化分析系统-Spark-Hadoop-Bigdata
大数据·hadoop·信息可视化·spark·毕业设计·数据可视化·bigdata
Lx3521 天前
Hadoop性能瓶颈分析:从JVM到磁盘IO的全链路优化
大数据·hadoop