Hive JDBC

Hive远程模式搭建好之后,可以使用Beeline客户端或JDBC远程访问Hive了

启动HiveServer2服务

bash 复制代码
$ hive --service hiveserver2 &

新建Java Maven项目,在pom.xml中添加以下依赖

XML 复制代码
    <dependencies>
        <dependency>
            <groupId>jdk.tools</groupId>
            <artifactId>jdk.tools</artifactId>
            <version>1.8</version>
            <scope>system</scope>
            <systemPath>${JAVA_HOME}/lib/tools.jar</systemPath>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.hbase/hbase-mapreduce -->
        <dependency>
            <groupId>org.apache.hive</groupId>
            <artifactId>hive-jdbc</artifactId>
            <version>2.3.9</version>
        </dependency>

    </dependencies>

编写JDBC程序

主要分五个步骤:

1.加载JDBC驱动

使用Class.forName()加载JDBC驱动

2.获取连接

使用DriverManager驱动管理类获取Hive连接

3.执行查询

通过Statement对象的executeQuery()方法执行查询命令

4.处理结果集

通过ResultSet对象获取返回的结果。ResultSet是JDBC用于装载返回数据的类。

5.关闭连接

关闭连接,释放资源

java 复制代码
package org.example;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.Statement;

/**
 * Hive JDBC 测试类
 */
public class HiveJDBCTest {
    public static void main(String[] args) throws Exception{
        // 驱动名称
        String driver = "org.apache.hive.jdbc.HiveDriver";
        // 连接地址,默认使用端口10000
        String url = "jdbc:hive2://192.168.153.133:10000/test_db";
        // 用户名(Hadoop集群的登录用户)
        String username = "hadoop";
        // 密码
        String password = "";
        // 1.接在JDBC裙动
        Class.forName(driver);
        // 2.获取连接
        Connection conn = DriverManager.getConnection(url, username, password);
        Statement stmt = conn.createStatement();
        // 3.执行查询
        ResultSet res = stmt.executeQuery("select * from t_user");
        // 4.处理结果
        while(res.next()){
            System.out.println(res.getInt(1) + "\t" + res.getString(2));
        }
        // 5.关闭连接
        res.close();
        stmt.close();
        conn.close();
    }
}
相关推荐
Lx35212 小时前
复杂MapReduce作业设计:多阶段处理的最佳实践
大数据·hadoop
Lx3522 天前
Hadoop数据处理优化:减少Shuffle阶段的性能损耗
大数据·hadoop
Lx3523 天前
Hadoop容错机制深度解析:保障作业稳定运行
大数据·hadoop
IT毕设梦工厂3 天前
大数据毕业设计选题推荐-基于大数据的客户购物订单数据分析与可视化系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·数据分析·spark·毕业设计·源码·bigdata
大数据CLUB3 天前
基于spark的澳洲光伏发电站选址预测
大数据·hadoop·分布式·数据分析·spark·数据开发
计算机编程小央姐3 天前
跟上大数据时代步伐:食物营养数据可视化分析系统技术前沿解析
大数据·hadoop·信息可视化·spark·django·课程设计·食物
IT学长编程3 天前
计算机毕业设计 基于Hadoop的健康饮食推荐系统的设计与实现 Java 大数据毕业设计 Hadoop毕业设计选题【附源码+文档报告+安装调试】
java·大数据·hadoop·毕业设计·课程设计·推荐算法·毕业论文
Lx3523 天前
Hadoop数据一致性保障:处理分布式系统常见问题
大数据·hadoop
IT学长编程4 天前
计算机毕业设计 基于Hadoop豆瓣电影数据可视化分析设计与实现 Python 大数据毕业设计 Hadoop毕业设计选题【附源码+文档报告+安装调试
大数据·hadoop·python·django·毕业设计·毕业论文·豆瓣电影数据可视化分析