Flink中的双流Join

1. Flink中双流Join介绍

|---------|-----------------------|----------------------|
| Flink版本 | Join支持类型 | Join API |
| 1.4 | inner | Table/SQL |
| 1.5 | inner,left,right,full | Table/SQL |
| 1.6 | inner,left,right,full | Table/SQL/DataStream |

Join大体分为两种:Window JoinInterval Join两种。

Window Join又可以根据Window的类型细分为3种:

Tumbling Window Join、Sliding Window Join、Session Window Join。

Windows类型的join都是利用state存储数据再处理,区别在于state中的数据有失效机制,依靠数据触发数据清理;所以实际开发注意状态的过期时间,免得关联不到数据

目前Stream join的结果是数据的笛卡尔积;

2. Window Join

将两条实时流中元素分配到一个时间窗口中完成 Join

Tumbling Window Join(滚动窗口)

执行翻滚窗口联接时,具有公共键和公共翻滚窗口的所有元素将作为成对组合联接,并传递给JoinFunction或FlatJoinFunction。因为它的行为类似于内部连接,所以一个流中的元素在其滚动窗口中没有来自另一个流的元素,因此不会被发射!

如图所示,我们定义了一个大小为2毫秒的翻滚窗口,结果窗口的形式为[0,1]、[2,3]、。。。。该图显示了每个窗口中所有元素的成对组合,这些元素将传递给JoinFunction。注意,在翻滚窗口[6,7]中没有发射任何东西,因为绿色流中不存在与橙色元素⑥和⑦结合的元素。

Sliding Window Join(滑动窗口)

在执行滑动窗口联接时,具有公共键和公共滑动窗口的所有元素将作为成对组合联接,并传递给JoinFunction或FlatJoinFunction。在当前滑动窗口中,一个流的元素没有来自另一个流的元素,则不会发射!请注意,某些元素可能会连接到一个滑动窗口中,但不会连接到另一个滑动窗口中!

在本例中,我们使用大小为2毫秒的滑动窗口,并将其滑动1毫秒,从而产生滑动窗口[-1,0],[0,1],[1,2],[2,3]...。x轴下方的连接元素是传递给每个滑动窗口的JoinFunction的元素。在这里,您还可以看到,例如,在窗口[2,3]中,橙色②与绿色③连接,但在窗口[1,2]中没有与任何对象连接。

Session Window Join(会话窗口)

在执行会话窗口联接时,具有相同键(当"组合"时满足会话条件)的所有元素以成对组合方式联接,并传递给JoinFunction或FlatJoinFunction。同样,这执行一个内部连接,所以如果有一个会话窗口只包含来自一个流的元素,则不会发出任何输出!

在这里,我们定义了一个会话窗口连接,其中每个会话被至少1ms的间隔分割。有三个会话,在前两个会话中,来自两个流的连接元素被传递给JoinFunction。在第三个会话中,绿色流中没有元素,所以⑧和⑨没有连接!

两条流数据按照关联主键在这三种窗口内进行inner join,底层基于State存储,并支持处理时间和事件时间两种特征

3. Interval Join

Window Join必须要在一个Window中进行JOIN,那如果没有Window如何处理呢?
interval join 根据右流相对左流偏移的时间区间(interval)作为关联窗口,在偏移区间窗口中完成join。

也是使用相同的key来join两个流(流A、流B),并且流B中的元素中的时间戳,和流A元素的时间戳,有一个时间间隔。

条件:

a.timestamp + lowerBound <= b.timestamp <= a.timestamp + upperBound

也就是

流B的元素的时间戳 >= 流A的元素时间戳 + 下界,且,流B的元素的时间戳<=流A的元素时间戳+上界

在上面的示例中,我们将两个流"orange"和"green"连接起来,其下限为-2毫秒,上限为+1毫秒。默认情况下,这些边界是包含的,但是可以应用.lowerBoundExclusive()和.upperBoundExclusive来更改行为.

orangeElem.ts + lowerBound <= greenElem.ts <= orangeElem.ts + upperBound

在流入程序后,等候(low,high)时间间隔内的数据进行join, 否则继续处理下一个流。

从代码中我们发现,interval join需要在两个KeyedStream之上操作,即keyBy(),并在between()方法中指定偏移区间的上下界。

需要注意的是interval join实现的也是inner join,且目前只支持事件时间。

相关推荐
SafePloy安策42 分钟前
ES信息防泄漏:策略与实践
大数据·elasticsearch·开源
学术搬运工1 小时前
【珠海科技学院主办,暨南大学协办 | IEEE出版 | EI检索稳定 】2024年健康大数据与智能医疗国际会议(ICHIH 2024)
大数据·图像处理·人工智能·科技·机器学习·自然语言处理
Matrix702 小时前
HBase理论_背景特点及数据单元及与Hive对比
大数据·数据库·hbase
B站计算机毕业设计超人3 小时前
计算机毕业设计Python+大模型农产品价格预测 ARIMA自回归模型 农产品可视化 农产品爬虫 机器学习 深度学习 大数据毕业设计 Django Flask
大数据·爬虫·python·深度学习·机器学习·课程设计·数据可视化
好记性+烂笔头4 小时前
Flink_DataStreamAPI_输出算子Sink
flink
Carl_奕然4 小时前
【大数据算法】MapReduce算法概述之:MapReduce基础模型
大数据·算法·mapreduce
Elastic 中国社区官方博客4 小时前
Elasticsearch 8.16:适用于生产的混合对话搜索和创新的向量数据量化,其性能优于乘积量化 (PQ)
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
飞翔的佩奇4 小时前
ElasticSearch:使用dsl语句同时查询出最近2小时、最近1天、最近7天、最近30天的数量
大数据·elasticsearch·搜索引擎·dsl
2301_769006785 小时前
19名专家被通报批评!国家科技重大专项评审违规!
大数据·人工智能·科技·sci·期刊·ssci
Yz98766 小时前
Kafka面试题
大数据·分布式·zookeeper·kafka·big data