【LeetCode-337】打家劫舍III(动态规划)

目录

题目描述

解法1:动态规划

代码实现


题目链接

题目描述

在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为"根"。 除了"根"之外,每栋房子有且只有一个"父"房子与之相连。一番侦察之后,聪明的小偷意识到"这个地方的所有房屋的排列类似于一棵二叉树"。 如果两个直接相连的房子在同一天晚上被打劫,房屋将自动报警。

计算在不触动警报的情况下,小偷一晚能够盗取的最高金额。

解法1:动态规划

这道题目算是树形dp的入门题目,因为是在树上进行状态转移,我们在讲解二叉树的时候说过递归三部曲,那么下面我以递归三部曲为框架,其中融合动规五部曲的内容来进行讲解

  1. 确定递归函数的参数和返回值

这里我们要求一个节点 偷与不偷的两个状态所得到的金钱,那么返回值就是一个长度为2的数组。

参数为当前节点,代码如下:

复制代码
vector<int> robTree(TreeNode* cur) {

其实这里的返回数组就是dp数组。

所以dp数组(dp table)以及下标的含义:下标为0记录不偷该节点所得到的的最大金钱,下标为1记录偷该节点所得到的的最大金钱。

所以本题dp数组就是一个长度为2的数组!

那么有同学可能疑惑,长度为2的数组怎么标记树中每个节点的状态呢?

别忘了在递归的过程中,系统栈会保存每一层递归的参数

如果还不理解的话,就接着往下看,看到代码就理解了哈。

  1. 确定终止条件

在遍历的过程中,如果遇到空节点的话,很明显,无论偷还是不偷都是0,所以就返回

if (cur == NULL) return vector<int>{0, 0};

这也相当于dp数组的初始化

  1. 确定遍历顺序

首先明确的是使用后序遍历。 因为要通过递归函数的返回值来做下一步计算。

通过递归左节点,得到左节点偷与不偷的金钱。

通过递归右节点,得到右节点偷与不偷的金钱。

代码如下:

// 下标0:不偷,下标1:偷
vector<int> left = robTree(cur->left); // 左
vector<int> right = robTree(cur->right); // 右
// 中
  1. 确定单层递归的逻辑

如果是偷当前节点,那么左右孩子就不能偷,val1 = cur->val + left[0] + right[0]; (如果对下标含义不理解就再回顾一下dp数组的含义

如果不偷当前节点,那么左右孩子就可以偷,至于到底偷不偷一定是选一个最大的,所以:val2 = max(left[0], left[1]) + max(right[0], right[1]);

最后当前节点的状态就是{val2, val1}; 即:{不偷当前节点得到的最大金钱,偷当前节点得到的最大金钱}

代码如下:

vector<int> left = robTree(cur->left); // 左
vector<int> right = robTree(cur->right); // 右
​
// 偷cur
int val1 = cur->val + left[0] + right[0];
// 不偷cur
int val2 = max(left[0], left[1]) + max(right[0], right[1]);
return {val2, val1};
代码实现
class Solution {
    public int rob(TreeNode root) {
        if (root.left == null && root.right == null) return root.val;
        int[] dp = dfs(root);
        return Math.max(dp[0], dp[1]);
    }
​
    public int[] dfs(TreeNode root) {
        int[] leafArr = new int[2];
        if (root == null) return leafArr;
        int[] left = dfs(root.left);
        int[] right = dfs(root.right);
​
        int[] dp = new int[2];
        dp[0] = Math.max(left[0], left[1]) + Math.max(right[0], right[1]);
        dp[1] = root.val + left[0] + right[0];
        return dp;
​
    }
}
相关推荐
LUCIAZZZ4 分钟前
简单说一下什么是RPC
java·网络·网络协议·计算机网络·spring cloud·rpc
嘵奇7 分钟前
最新版IDEA下载安装教程
java·intellij-idea
s_fox_33 分钟前
Nginx Embedded Variables 嵌入式变量解析(4)
java·网络·nginx
Jelena1577958579239 分钟前
使用Java爬虫获取1688 item_get_company 接口的公司档案信息
java·开发语言·爬虫
数据小小爬虫42 分钟前
Jsoup解析商品详情时,如何确保数据准确性?
java·爬虫
V+zmm101341 小时前
自驾游拼团小程序的设计与实现(ssm论文源码调试讲解)
java·数据库·微信小程序·小程序·毕业设计
wen__xvn1 小时前
每日一题洛谷P1914 小书童——凯撒密码c++
数据结构·c++·算法
坚定信念,勇往无前1 小时前
springboot单机支持1w并发,需要做哪些优化
java·spring boot·后端
丁总学Java1 小时前
`AdminAdminDTO` 和 `userSession` 对象中的字段对应起来的表格
java
BUG 劝退师2 小时前
八大经典排序算法
数据结构·算法·排序算法