#LLM入门|Prompt#1.1 第一部分_面向开发者的LLM入门教程_简介

Prompt工程:解锁大语言模型潜能的关键技巧

随着大语言模型(LLM)的兴起,Prompt工程已成为开发者利用LLM构建功能强大应用的关键技能。在这个新时代,Prompt不仅是指导LLM的输入形式,更是塑造其能力上限与下限的重要因素。

Prompt工程入门

针对开发者的提示工程教程,由吴恩达老师与OpenAI合作推出,《ChatGPT Prompt Engineering for Developers》深入浅出地介绍了如何构建Prompt以及利用OpenAI API实现多种功能,如总结、推断、转换等。

主要内容:
  1. Prompt构建原则与技巧
  2. 文本总结(如用户评论)
  3. 文本推断(如情感分类、主题提取)
  4. 文本转换(如翻译、自动纠错)
  5. 扩展功能(如邮件书写)

掌握Prompt工程的技巧,将帮助你充分利用LLM,实现个性化定制的功能,开启LLM应用开发的新篇章。

提示工程简介

背景与合作

  • 基于《Prompt Engineering for Developer》课程,合作吴恩达老师与 OpenAI 技术团队成员 Isa Fulford 老师。
  • Isa Fulford 老师为知名ChatGPT插件开发者,曾在LLM技术应用和Prompt设计方面做出重要贡献。

目标与内容

  • 旨在分享使用提示词开发LLM应用的最佳实践和技巧。
  • 包括软件开发提示词设计、文本总结、推理、转换、扩展以及构建聊天机器人等方面的知识。

LLM类型介绍

  1. 基础LLM
  • 通过大量文本数据训练,预测下一个单词能力。
  • 例子:以输入提示为"从前,有一只独角兽",LLM继续预测"她与独角兽朋友共同生活在一片神奇森林中"。
  1. 指令微调LLM
  • 通过专门训练,更好理解并遵循指令。
  • 例子:当询问"法国的首都是什么?"时,模型直接回答"法国的首都是巴黎"。

举例

  • 基础LLM :
    • 输入提示:"从前,有一只独角兽"
    • 输出:"她与独角兽朋友共同生活在一片神奇森林中"
    • 输入提示:"法国的首都是什么?"
    • 输出:"法国最大的城市是什么?法国的人口是多少?"
  • 指令微调LLM :
    • 输入指令:"请为我写一些关于阿兰·图灵( Alan Turing )的东西"
    • 输出:"阿兰·图灵是20世纪最伟大的数学家之一,他的工作对现代计算机科学产生了深远影响。"
    • 输入指令:"向朋友写一封关于假期的邮件"
    • 输出:"嘿!最近过得怎么样?我想分享一下我最近的假期经历。"

课程重点

  • 针对指令微调LLM的最佳实践。
  • 强调指令明确性的重要性,建议提供充足思考时间。
  • 可自定义语调及内容细节,以满足特定需求。
相关推荐
ai大师2 分钟前
(附代码及图示)Multi-Query 多查询策略详解
python·langchain·中转api·apikey·中转apikey·免费apikey·claude4
GIS小天23 分钟前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年6月7日第101弹
人工智能·算法·机器学习·彩票
小小爬虾23 分钟前
关于datetime获取时间的问题
python
阿部多瑞 ABU32 分钟前
主流大语言模型安全性测试(三):阿拉伯语越狱提示词下的表现与分析
人工智能·安全·ai·语言模型·安全性测试
cnbestec39 分钟前
Xela矩阵三轴触觉传感器的工作原理解析与应用场景
人工智能·线性代数·触觉传感器
不爱写代码的玉子1 小时前
HALCON透视矩阵
人工智能·深度学习·线性代数·算法·计算机视觉·矩阵·c#
sbc-study1 小时前
PCDF (Progressive Continuous Discrimination Filter)模块构建
人工智能·深度学习·计算机视觉
EasonZzzzzzz1 小时前
计算机视觉——相机标定
人工智能·数码相机·计算机视觉
猿小猴子1 小时前
主流 AI IDE 之一的 Cursor 介绍
ide·人工智能·cursor
要努力啊啊啊1 小时前
Reranker + BM25 + FAISS 构建高效的多阶段知识库检索系统一
人工智能·语言模型·自然语言处理·faiss