spark超大数据批量写入redis

利用spark的分布式优势,一次性批量将7000多万的数据写入到redis中。

python 复制代码
# 配置spark接口
import os
import findspark
from pyspark import SparkConf
from pyspark.sql import SparkSession
os.environ["JAVA_HOME"] = "/usr/local/jdk1.8.0_192"
findspark.init("/usr/local/hadoop/spark-2.4.4-bin-hadoop2.6/")
# 设置配置信息
conf = SparkConf()
conf.set("spark.driver.memory", "16g")
conf.set("spark.executor.memory", "16g")
conf.set("spark.driver.maxResultSize","3g")
conf.set("spark.executor.maxResultSize", "3g")
conf.set("spark.ui.showConsoleProgress","false") # 取消进度条显示
spark = SparkSession.builder.appName("local_redis_spark").master("local[*]").enableHiveSupport().config(conf=conf).getOrCreate()
spark.sparkContext.setLogLevel("ERROR") # 提升日志级别
python 复制代码
import redis
# 初始化一个全局函数来获取Redis连接池
def get_redis_connection_pool():
    # 配置redis参数
    host='127.0.0.1' # 替换为redis的服务地址即可
    port=6379
    password='123456' # 密码
    db=1 # db库如果不设置 默认为0
    max_connections=10  # 设置最大连接数
    redis_pool = redis.ConnectionPool(host=host, port=port, db=db, password=password, max_connections=max_connections)  
    return redis_pool

# 清空旧数据
with redis.Redis(connection_pool=get_redis_connection_pool()) as r:
    r.flushdb() # 清空当前库的所有数据 而flushall()则情况所有库数据
python 复制代码
%%time
# 并行处理函数serv_id
def servid_pfun(sdf_data):
    # 定义redis写入函数 以连接池的方式获取链接 及时释放
    def write_to_redis(data_dict):
        with redis.Redis(connection_pool=get_redis_connection_pool()) as r:
            r.mset(data_dict)
    # 构建一个空字典 批量写入
    dat = {}
    for rw in sdf_data:
        dat[rw.serv_id] = str((rw.r_inst_id, rw.avg_value))
    # 批量写入
    write_to_redis(dat)
    
# 并行处理函数one_id
def oneid_pfun(sdf_data):
    # 定义redis写入函数 以连接池的方式获取链接 及时释放
    def write_to_redis(data_dict):
        with redis.Redis(connection_pool=get_redis_connection_pool()) as r:
            r.mset(data_dict)
    # 构建一个空字典 批量写入
    dat = {}
    for rw in sdf_data:
        dat[rw.r_inst_id] = str((rw.offer_list,rw.filter_prod_offer_inst_list,rw.fuka_serv_offer_list,rw.filter_list,rw.new_serv_id))
    # 批量写入
    write_to_redis(dat)

# 加载缓存数据
oneid_sdf = spark.sql("""select * from database.table1""")

servid_sdf = spark.sql("""select * from database.table2""")

# 设置分区数 如果批量写入的内存大小以及最大链接数有限制
# servid_num_parts = 50000
# oneid_num_parts = 10000 

# 使用repartition方法进行重新分区
# servid_sdf_part = servid_sdf.repartition(servid_num_parts)
# oneid_sdf_part = oneid_sdf.repartition(oneid_num_parts)

# 分批写入redis
servid_sdf.foreachPartition(servid_pfun)
print(f"servid字典缓存成功")
oneid_sdf.foreachPartition(oneid_pfun)
print(f"oneid字典缓存成功")
# 关闭spark
spark.stop() 
print(f"redis缓存插入成功")

执行时间可能跟资源环境有关,测试整个过程大概只需要5分钟左右,非常快速。

相关推荐
C嘎嘎嵌入式开发19 分钟前
(2)100天python从入门到拿捏
开发语言·python
悟能不能悟1 小时前
redis的红锁
数据库·redis·缓存
Stanford_11061 小时前
如何利用Python进行数据分析与可视化的具体操作指南
开发语言·c++·python·微信小程序·微信公众平台·twitter·微信开放平台
white-persist2 小时前
Python实例方法与Python类的构造方法全解析
开发语言·前端·python·原型模式
Java 码农3 小时前
Centos7 maven 安装
java·python·centos·maven
倔强青铜三3 小时前
苦练Python第63天:零基础玩转TOML配置读写,tomllib模块实战
人工智能·python·面试
浔川python社4 小时前
《网络爬虫技术规范与应用指南系列》(xc—3):合规实操与场景落地
python
B站计算机毕业设计之家4 小时前
智慧交通项目:Python+YOLOv8 实时交通标志系统 深度学习实战(TT100K+PySide6 源码+文档)✅
人工智能·python·深度学习·yolo·计算机视觉·智慧交通·交通标志
IT森林里的程序猿4 小时前
基于机器学习方法的网球比赛胜负趋势预测
python·机器学习·django
正牌强哥4 小时前
Futures_ML——机器学习在期货量化交易中的应用与实践
人工智能·python·机器学习·ai·交易·akshare