无约束最优化问题

  1. 无约束最优化问题是指在没有任何限制条件的情况下,求解目标函数的最大值或最小值的问题。从数学上说,这种问题通常被称为优化问题。
  2. 在解决无约束最优化问题时,主要涉及两个概念,即从初始点开始沿"哪个方向"以及"走多远"到达下一个点处。这里,"走多远"涉及之前提到的"步长"的概念,而"哪个方向"则涉及方向的概念。
  3. 无约束最优化是优化问题中最基本的形式之一,其解决方法和应用广泛性使得其成为了实际问题中的重要工具。在实际生活中,无约束最优化问题有着广泛的应用,例如在工程设计、金融投资和机器学习等领域中。
  4. 求解无约束最优化问题的方法包括梯度下降、牛顿法、拟牛顿法等。这些方法都是基于目标函数的局部特性进行求解的,因此需要对目标函数进行一定的前提假设,如可微、连续等。然而,受限于算法复杂度等问题,目前大部分无约束最优化算法只能保证求取局部最小值点。不过,在实际应用中,许多情形被抽象为函数形式后均为凸函数,对于凸函数来说,局部最小值点即为全局最小值点,因此只要能求得这类函数的一个最小值点,该点一定为全局最小值点。
相关推荐
ahead~1 小时前
【大模型原理与技术-毛玉仁】第五章 模型编辑
人工智能·深度学习·机器学习
Mantanmu1 小时前
Python训练day40
人工智能·python·机器学习
小天才才2 小时前
前沿论文汇总(机器学习/深度学习/大模型/搜广推/自然语言处理)
人工智能·深度学习·机器学习·自然语言处理
MPCTHU2 小时前
机器学习的数学基础:神经网络
机器学习
武子康3 小时前
大数据-276 Spark MLib - 基础介绍 机器学习算法 Bagging和Boosting区别 GBDT梯度提升树
大数据·人工智能·算法·机器学习·语言模型·spark-ml·boosting
武子康3 小时前
大数据-277 Spark MLib - 基础介绍 机器学习算法 Gradient Boosting GBDT算法原理 高效实现
大数据·人工智能·算法·机器学习·ai·spark-ml·boosting
Gyoku Mint12 小时前
机器学习×第二卷:概念下篇——她不再只是模仿,而是开始决定怎么靠近你
人工智能·python·算法·机器学习·pandas·ai编程·matplotlib
猛犸MAMMOTH13 小时前
Python打卡第46天
开发语言·python·机器学习
小wanga14 小时前
【递归、搜索与回溯】专题三 穷举vs暴搜vs回溯vs剪枝
c++·算法·机器学习·剪枝
deephub16 小时前
提升模型泛化能力:PyTorch的L1、L2、ElasticNet正则化技术深度解析与代码实现
人工智能·pytorch·python·深度学习·机器学习·正则化