无约束最优化问题

  1. 无约束最优化问题是指在没有任何限制条件的情况下,求解目标函数的最大值或最小值的问题。从数学上说,这种问题通常被称为优化问题。
  2. 在解决无约束最优化问题时,主要涉及两个概念,即从初始点开始沿"哪个方向"以及"走多远"到达下一个点处。这里,"走多远"涉及之前提到的"步长"的概念,而"哪个方向"则涉及方向的概念。
  3. 无约束最优化是优化问题中最基本的形式之一,其解决方法和应用广泛性使得其成为了实际问题中的重要工具。在实际生活中,无约束最优化问题有着广泛的应用,例如在工程设计、金融投资和机器学习等领域中。
  4. 求解无约束最优化问题的方法包括梯度下降、牛顿法、拟牛顿法等。这些方法都是基于目标函数的局部特性进行求解的,因此需要对目标函数进行一定的前提假设,如可微、连续等。然而,受限于算法复杂度等问题,目前大部分无约束最优化算法只能保证求取局部最小值点。不过,在实际应用中,许多情形被抽象为函数形式后均为凸函数,对于凸函数来说,局部最小值点即为全局最小值点,因此只要能求得这类函数的一个最小值点,该点一定为全局最小值点。
相关推荐
databook20 分钟前
不平衡样本数据的救星:数据再分配策略
python·机器学习·scikit-learn
补三补四28 分钟前
机器学习-聚类分析算法
人工智能·深度学习·算法·机器学习
荷包蛋蛋怪1 小时前
【北京化工大学】 神经网络与深度学习 实验6 MATAR图像分类
人工智能·深度学习·神经网络·opencv·机器学习·计算机视觉·分类
Uzuki8 小时前
AI可解释性 II | Saliency Maps-based 归因方法(Attribution)论文导读(持续更新)
深度学习·机器学习·可解释性
蹦蹦跳跳真可爱5899 小时前
Python----机器学习(KNN:使用数学方法实现KNN)
人工智能·python·机器学习
云和数据.ChenGuang13 小时前
机器学习之回归算法
人工智能·机器学习·回归
代码骑士13 小时前
聚类(Clustering)基础知识2
机器学习·数据挖掘·聚类
深蓝学院13 小时前
闭环SOTA!北航DiffAD:基于扩散模型实现端到端自动驾驶「多任务闭环统一」
人工智能·机器学习·自动驾驶
仙人掌_lz14 小时前
机器学习ML极简指南
人工智能·python·算法·机器学习·面试·强化学习