无约束最优化问题

  1. 无约束最优化问题是指在没有任何限制条件的情况下,求解目标函数的最大值或最小值的问题。从数学上说,这种问题通常被称为优化问题。
  2. 在解决无约束最优化问题时,主要涉及两个概念,即从初始点开始沿"哪个方向"以及"走多远"到达下一个点处。这里,"走多远"涉及之前提到的"步长"的概念,而"哪个方向"则涉及方向的概念。
  3. 无约束最优化是优化问题中最基本的形式之一,其解决方法和应用广泛性使得其成为了实际问题中的重要工具。在实际生活中,无约束最优化问题有着广泛的应用,例如在工程设计、金融投资和机器学习等领域中。
  4. 求解无约束最优化问题的方法包括梯度下降、牛顿法、拟牛顿法等。这些方法都是基于目标函数的局部特性进行求解的,因此需要对目标函数进行一定的前提假设,如可微、连续等。然而,受限于算法复杂度等问题,目前大部分无约束最优化算法只能保证求取局部最小值点。不过,在实际应用中,许多情形被抽象为函数形式后均为凸函数,对于凸函数来说,局部最小值点即为全局最小值点,因此只要能求得这类函数的一个最小值点,该点一定为全局最小值点。
相关推荐
DeepModel37 分钟前
【回归算法】线性回归详解
机器学习·回归·线性回归
人工智能研究所1 小时前
从 0 开始学习人工智能——什么是推理模型?
人工智能·深度学习·学习·机器学习·语言模型·自然语言处理
爱吃羊的老虎1 小时前
【机器学习】Transformer核心架构与工作原理深度解析
人工智能·深度学习·机器学习·语言模型
啊阿狸不会拉杆1 小时前
《计算机视觉:模型、学习和推理》第 4 章-拟合概率模型
人工智能·python·学习·算法·机器学习·计算机视觉·拟合概率模型
陈天伟教授1 小时前
人工智能应用- 人工智能交叉:06.解析蛋白质宇宙
人工智能·神经网络·算法·机器学习·推荐算法
牛哥带你学代码2 小时前
Spatiotemporal Prediction using Deep Learning
人工智能·深度学习·机器学习
啊阿狸不会拉杆2 小时前
《计算机视觉:模型、学习和推理》第 5 章-正态分布
人工智能·python·学习·算法·机器学习·计算机视觉·正态分布
啊阿狸不会拉杆2 小时前
《计算机视觉:模型、学习和推理》第 3 章-常用概率分布
人工智能·python·学习·机器学习·计算机视觉·正态分布·概率分布
jz_ddk10 小时前
[数学基础] 浅尝向量与张量
人工智能·机器学习·向量·张量
陈天伟教授13 小时前
人工智能应用- 人工智能交叉:01. 破解蛋白质结构之谜
人工智能·神经网络·算法·机器学习·推荐算法