Python环境下基于门控双注意力机制的滚动轴承剩余使用寿命RUL预测(Tensorflow模块)

机械设备的寿命是其从开始工作持续运行直至故障出现的整个时间段,以滚动轴承为例,其寿命为开始转动直到滚动体或是内外圈等元件出现首次出现故障前。目前主流的滚动轴承RUL预测分类方法包含两种:一是基于物理模型的RUL预测方法,二是基于数据驱动的RUL预测方法。

基于物理模型的RUL预测方法是利用物理学模型来描述基于失效机制的物理现象,并在一定的假设条件下建立滚动轴承RUL预测的公式模型。但要想建立精确的滚动轴承退化物理学模型,需要对复杂的轴承结构有深入的了解,需要相关人员有较深厚的知识背景,费时费力,且模型泛化能力弱。数学模型表达退化趋势的前提是构建合理的健康指数。

基于数据驱动的RUL预测方法可分为三个步骤:一是数据获取,在数据采集的过程中通常采用的是振动信号或是声学信号;二是健康指标构建,构建健康指标来监测旋转机械的退化,主要包括均方根、变分模态分解、数学形态谱熵和主成分分析等方法;三是剩余使用寿命预测方法,基于数据驱动的轴承剩余使用寿命预测方法又可分为基于统计模型的轴承剩余使用寿命预测方法和基于人工智能模型的轴承剩余使用寿命预测方法。

该代码为Python环境下基于门控双注意力机制的滚动轴承剩余使用寿命RUL预测(采用Tensorflow模块),所用模块如下:

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import numpy as np
import matplotlib.pyplot as plt
import scipy.io as scio

Tensorflow模块版本如下:

tensorflow=2.8.0

所使用的数据为公开数据,试验台如下:

部分代码如下:

# Builds GDAU cell structure
def gdaumodel(gdau_input,gdau_state,n_input, n_hidden, n_output):
    weights = initialize_weights(n_input, n_hidden, n_output)
    r = tf.sigmoid(tf.matmul(weights['ur'], gdau_input) + tf.matmul(weights['wr'], gdau_state) + weights['br']) # The output of the reset gate
    z = tf.sigmoid(tf.matmul(weights['uz'], gdau_input) + tf.matmul(weights['wz'], gdau_state) + weights['bz']) # The output of the update gate
    candidate = tf.tanh(tf.matmul(weights['uh'], gdau_input) + tf.matmul(weights['wh'], tf.multiply(r,gdau_state)) + weights['bh']) # The output of the candidate state
    at = tf.matmul(weights['v'],tf.tanh(tf.matmul(weights['ua1'],gdau_input) + tf.matmul(weights['wa1'],gdau_state)))
    ut = tf.nn.softmax(at, axis=0)
    h = tf.tanh(tf.multiply(ut,(tf.matmul(weights['ua2'],gdau_input) + tf.matmul(weights['wa2'],gdau_state)))) # The output of the attention gate 1
    a1 = tf.sigmoid(tf.matmul(weights['uaa1'],r) + tf.matmul(weights['waa1'],z) + weights['baa1'])
    a2 = tf.tanh(tf.matmul(weights['uaa2'], r) + tf.matmul(weights['waa2'], z) + weights['baa2'])
    a = tf.multiply(a1, a2) # The output of the attention gate 2
    ht = tf.multiply((1-z), gdau_state) + tf.multiply(z ,candidate)/2 + tf.multiply(z, h)/2 + a # The output of hidden layer
    output = tf.matmul(weights['w'], ht) + weights['b'] # The output of output layer
    return output, ht

出图如下:

工学博士,担任《Mechanical System and Signal Processing》审稿专家,担任
《中国电机工程学报》优秀审稿专家,《控制与决策》,《系统工程与电子技术》,《电力系统保护与控制》,《宇航学报》等EI期刊审稿专家。擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

相关推荐
千澜空3 分钟前
celery在django项目中实现并发任务和定时任务
python·django·celery·定时任务·异步任务
学习前端的小z6 分钟前
【AIGC】如何通过ChatGPT轻松制作个性化GPTs应用
人工智能·chatgpt·aigc
斯凯利.瑞恩10 分钟前
Python决策树、随机森林、朴素贝叶斯、KNN(K-最近邻居)分类分析银行拉新活动挖掘潜在贷款客户附数据代码
python·决策树·随机森林
杨荧25 分钟前
【JAVA毕业设计】基于Vue和SpringBoot的服装商城系统学科竞赛管理系统
java·开发语言·vue.js·spring boot·spring cloud·java-ee·kafka
白子寰32 分钟前
【C++打怪之路Lv14】- “多态“篇
开发语言·c++
yannan2019031332 分钟前
【算法】(Python)动态规划
python·算法·动态规划
埃菲尔铁塔_CV算法34 分钟前
人工智能图像算法:开启视觉新时代的钥匙
人工智能·算法
EasyCVR34 分钟前
EHOME视频平台EasyCVR视频融合平台使用OBS进行RTMP推流,WebRTC播放出现抖动、卡顿如何解决?
人工智能·算法·ffmpeg·音视频·webrtc·监控视频接入
打羽毛球吗️40 分钟前
机器学习中的两种主要思路:数据驱动与模型驱动
人工智能·机器学习
蒙娜丽宁42 分钟前
《Python OpenCV从菜鸟到高手》——零基础进阶,开启图像处理与计算机视觉的大门!
python·opencv·计算机视觉