TensorRT及CUDA自学笔记005 GPU架构和线程束

TensorRT及CUDA自学笔记005 GPU架构和线程束

GPU架构

流处理器streaming multiprocessor (SM)

每一个SM包含整数个CUDA core、共享内存\L1缓存(shared memory\L1cache)、注册文件(Register File)、加载和存储单元(Load\Store Units)、特殊函数单元SFU(Special Function Unit)、Warps调度(Warps Scheduler)

Fermi架构

  1. Fermi架构中512个CUDA内核构成16个SM,每个core中包含算数逻辑单元(ALU)和浮点计算单元(FPU)
  2. Fermi架构包含6G全局内存
  3. Fermi架构通过PCIE总线和主机连接
  4. Fermi架构中,每个SM包含16个加载和存储单元
  5. Fermi架构包含四个SFU,包含两个Warps Scheduler,两个Dispatch Unit

其中绿色为CUDA core

线程束(Warps)

左边是编程时的软件模型,右边时线程在物理层面的模型

每个GPU可以并行执行大量的thread,GPU中的每一个core执行一个thread,但是在物理上thread并不是真正的完全同步运行的,core,block总共就那么多,是不能支持过多的thread完全同时运行的,所以,就像排队一样,grid中的block被分配到GPU上的SM上执行,每个SM是先执行完一批thread后在执行下一批thread,多批线程块按顺序地在同一批SM中执行。

当block被分配在SM上时,就会以32个thread为一组进行分割,每一组为一个warp

线程束的数量计算

  1. 每个Warp包含32个thread
  2. 每个warp中只能包含同一个block中的thread(每个block中的所有thread的计算是一样的,只有其用于计算的数据是不同的)

所以我们要用block的维度计算出的thread的数量除以32,再向上取整就可以得到共需要多少个warp(注意不是SM)

相关推荐
真实的菜3 分钟前
Kafka生态整合深度解析:构建现代化数据架构的核心枢纽
架构·kafka·linq
future14124 分钟前
每日问题总结
经验分享·笔记
guojl30 分钟前
营销客群规则引擎
架构
oioihoii33 分钟前
C++11 forward_list 从基础到精通:原理、实践与性能优化
c++·性能优化·list
m0_6873998441 分钟前
写一个Ununtu C++ 程序,调用ffmpeg API, 来判断一个数字电影的视频文件mxf 是不是Jpeg2000?
开发语言·c++·ffmpeg
Natsume17101 小时前
嵌入式开发:GPIO、UART、SPI、I2C 驱动开发详解与实战案例
c语言·驱动开发·stm32·嵌入式硬件·mcu·架构·github
DemonAvenger1 小时前
深入理解Go的网络I/O模型:优势、实践与踩坑经验
网络协议·架构·go
循环过三天2 小时前
3-1 PID算法改进(积分部分)
笔记·stm32·单片机·学习·算法·pid
Ronin3052 小时前
【C++】类型转换
开发语言·c++
之歆2 小时前
Python-封装和解构-set及操作-字典及操作-解析式生成器-内建函数迭代器-学习笔记
笔记·python·学习