數據集成平台:datax將hive數據步到mysql(全部列和指定列)

數據集成平台:datax將hive數據步到mysql(全部列和指定列)

1.py腳本

傳入參數:

target_database:數據庫

target_table:表

target_columns:列

target_positions:hive列的下標(從0開始)

bash 复制代码
# coding=utf-8
import json
import getopt
import os
import sys
import MySQLdb

# MySQL相关配置,需根据实际情况作出修改
mysql_host = "hadoop102"
mysql_port = "3306"
mysql_user = "root"
mysql_passwd = "xx"

# HDFS NameNode相关配置,需根据实际情况作出修改
hdfs_nn_host = "mycluster"
hdfs_nn_port = "8020"


def get_connection():
    return MySQLdb.connect(host=mysql_host, port=int(mysql_port), user=mysql_user, passwd=mysql_passwd)


def get_mysql_meta(database, table, columns):
    connection = get_connection()
    cursor = connection.cursor()
    if columns == 'all':
        # 如果传入 '*' 表示要所有列
        sql = "SELECT COLUMN_NAME, DATA_TYPE FROM information_schema.COLUMNS WHERE TABLE_SCHEMA='%s' AND TABLE_NAME='%s' ORDER BY ORDINAL_POSITION" % (database, table)
    else:
        # 传入指定列
        # 将每个列名加上单引号
        columns = ', '.join("'%s'" % col.strip() for col in columns.split(','))
        sql = "SELECT COLUMN_NAME, DATA_TYPE FROM information_schema.COLUMNS WHERE TABLE_SCHEMA='%s' AND TABLE_NAME='%s' AND COLUMN_NAME IN (%s) ORDER BY ORDINAL_POSITION" % (
        database, table, columns)
    cursor.execute(sql)
    fetchall = cursor.fetchall()
    # print(fetchall)
    cursor.close()
    connection.close()
    return fetchall


def get_mysql_columns(database, table, target_columns):
    return map(lambda x: x[0], get_mysql_meta(database, table, target_columns))


def get_hive_columns(database, table, target_columns, target_positions):
    def type_mapping(mysql_type):
        mappings = {
            "bigint": "bigint",
            "int": "bigint",
            "smallint": "bigint",
            "tinyint": "bigint",
            "mediumint": "bigint",
            "decimal": "string",
            "double": "double",
            "float": "float",
            "binary": "string",
            "char": "string",
            "varchar": "string",
            "datetime": "string",
            "time": "string",
            "timestamp": "string",
            "date": "string",
            "text": "string",
            "bit": "string",
        }
        return mappings[mysql_type]

    meta = get_mysql_meta(database, table, target_columns)

    if target_columns == 'all':
        return map(lambda x: {"name": x[0], "type": type_mapping(x[1].lower())}, meta)
    else:
        positions = list(map(int, target_positions.split(',')))
        return map(lambda x, i: {"index": positions[i], "type": type_mapping(x[1].lower())}, meta, range(len(meta)))


def generate_json(target_database, target_table, target_columns, target_positions):
    print(get_hive_columns(target_database, target_table, target_columns, target_positions))
    if target_columns == 'all':
        target_columns_hive = "[*]"
    else:
        target_columns_hive = get_hive_columns(target_database, target_table, target_columns, target_positions)
    job = {
        "job": {
            "setting": {
                "speed": {
                    "channel": 15
                },
                "errorLimit": {
                    "record": 0,
                    "percentage": 0.02
                }
            },
            "content": [{
                "reader": {
                    "name": "hdfsreader",
                    "batchSize": "8192",
                    "batchByteSize": "33554432",
                    "parameter": {
                        "path": "${exportdir}",
                        "defaultFS": "hdfs://" + hdfs_nn_host + ":" + hdfs_nn_port,
                        "column": target_columns_hive,
                        "fileType": "orc",
                        "encoding": "UTF-8",
                        "fieldDelimiter": u"\u0001",
                        "nullFormat": "\\N"
                    }
                },
                "writer": {
                    "name": "mysqlwriter",
                    "batchSize": "8192",
                    "batchByteSize": "33554432",
                    "parameter": {
                        "writeMode": "replace",
                        "username": mysql_user,
                        "password": mysql_passwd,
                        "column": get_mysql_columns(target_database, target_table, target_columns),
                        "connection": [
                            {
                                "jdbcUrl":
                                    "jdbc:mysql://" + mysql_host + ":" + mysql_port + "/" + target_database + "?useUnicode=true&characterEncoding=utf-8&useSSL=false",
                                "table": [target_table]
                            }
                        ]
                    }
                }
            }]
        }
}

    output_path = "/opt/module/datax/job/export/" + target_database
    if not os.path.exists(output_path):
        os.makedirs(output_path)
    with open(os.path.join(output_path, ".".join([target_database, target_table, "json"])), "w") as f:
        json.dump(job, f)


def main(args):
    target_database = ""
    target_table = ""
    target_columns = ""  # 默认为 None,表示没有指定列信息
    target_positions = ""

    options, arguments = getopt.getopt(args, 'p:d:t:c:', ['positions=', 'targetdb=', 'targettbl=', 'columns='])
    for opt_name, opt_value in options:
        if opt_name in ('-d', '--targetdb'):
            target_database = opt_value
        if opt_name in ('-t', '--targettbl'):
            target_table = opt_value
        if opt_name in ('-c', '--columns'):
            target_columns = opt_value
        if opt_name in ('-p', '--positions'):
            target_positions = opt_value
    print(target_database, target_table, target_columns, target_positions)
    generate_json(target_database, target_table, target_columns, target_positions)


if __name__ == '__main__':
    main(sys.argv[1:])

2.sh腳本

bash 复制代码
#!/bin/bash
python ~/bin/test.py -d db-t table -c all
#kunnr,name1,sort2,addrnumber,country,state -p 0,1,2,3,4,5
#all
相关推荐
Catfood_Eason24 分钟前
初识MySQL
数据库·mysql
鬼才血脉1 小时前
Ubuntu上安装MySQL 8并配置Navicat远程连接
mysql·ubuntu·adb
爱编程的王小美3 小时前
本地MySQL连接hive
数据库·hive·mysql
云计算DevOps-韩老师3 小时前
精品,架构师总结,MySQL 5.7 查询入门详解
数据库·mysql
didiplus4 小时前
MySQL 8.0 OCP(1Z0-908)英文题库(1-10)
mysql·adb·ocp·数据库管理员·mysql认证
凡梦千华4 小时前
在一台CentOS服务器上开启多个MySQL服务
服务器·mysql·centos
进击的CJR4 小时前
MySQL 8.0 OCP 英文题库解析(二)
android·mysql·开闭原则
苹果酱05674 小时前
[数据库之十一] 数据库索引之联合索引
java·vue.js·spring boot·mysql·课程设计
敲上瘾5 小时前
MySQL数据库与表结构操作指南
linux·数据库·mysql
老友@6 小时前
MySQL 与 Elasticsearch 数据一致性方案
数据库·mysql·elasticsearch·搜索引擎·同步·数据一致性