pytorch建模的三种方式

复制代码
# 可以使用以下3种方式构建模型:
#
# 1,继承nn.Module基类构建自定义模型。
#
# 2,使用nn.Sequential按层顺序构建模型。
#
# 3,继承nn.Module基类构建模型并辅助应用模型容器进行封装(nn.Sequential,nn.ModuleList,nn.ModuleDict)。
#
# 其中 第1种方式最为常见,第2种方式最简单,第3种方式最为灵活也较为复杂。
复制代码
# 一、继承nn.Module基类构建自定义模型
复制代码
from torch import nn
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3)
        self.pool1 = nn.MaxPool2d(kernel_size = 2,stride = 2)
        self.conv2 = nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5)
        self.pool2 = nn.MaxPool2d(kernel_size = 2,stride = 2)
        self.dropout = nn.Dropout2d(p = 0.1)
        self.adaptive_pool = nn.AdaptiveMaxPool2d((1,1))
        self.flatten = nn.Flatten()
        self.linear1 = nn.Linear(64,32)
        self.relu = nn.ReLU()
        self.linear2 = nn.Linear(32,1)
    def forward(self,x):
        x = self.conv1(x)
        x = self.pool1(x)
        x = self.conv2(x)
        x = self.pool2(x)
        x = self.dropout(x)
        x = self.adaptive_pool(x)
        x = self.flatten(x)
        x = self.linear1(x)
        x = self.relu(x)
        y = self.linear2(x)
        return y
net = Net()
print(net)
#查看参数
from torchkeras import summary
summary(net,input_shape= (3,32,32));

二、使用nn.Sequential按层顺序构建模型 # 利用add_module方法

复制代码
net = nn.Sequential()
net.add_module("conv1",nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3))
net.add_module("pool1",nn.MaxPool2d(kernel_size = 2,stride = 2))
net.add_module("conv2",nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5))
net.add_module("pool2",nn.MaxPool2d(kernel_size = 2,stride = 2))
net.add_module("dropout",nn.Dropout2d(p = 0.1))
net.add_module("adaptive_pool",nn.AdaptiveMaxPool2d((1,1)))
net.add_module("flatten",nn.Flatten())
net.add_module("linear1",nn.Linear(64,32))
net.add_module("relu",nn.ReLU())
net.add_module("linear2",nn.Linear(32,1))
print(net)
复制代码
# 利用变长参数
复制代码
net = nn.Sequential(
    nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),
    nn.MaxPool2d(kernel_size = 2,stride = 2),
    nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),
    nn.MaxPool2d(kernel_size = 2,stride = 2),
    nn.Dropout2d(p = 0.1),
    nn.AdaptiveMaxPool2d((1,1)),
    nn.Flatten(),
    nn.Linear(64,32),
    nn.ReLU(),
    nn.Linear(32,1)
)
print(net)
复制代码
# 三、继承nn.Module基类构建模型并辅助应用模型容器进行封装
# nn.Sequential作为模型容器
复制代码
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),
            nn.MaxPool2d(kernel_size = 2,stride = 2),
            nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),
            nn.MaxPool2d(kernel_size = 2,stride = 2),
            nn.Dropout2d(p = 0.1),
            nn.AdaptiveMaxPool2d((1,1))
        )
        self.dense = nn.Sequential(
            nn.Flatten(),
            nn.Linear(64,32),
            nn.ReLU(),
            nn.Linear(32,1)
        )
    def forward(self,x):
        x = self.conv(x)
        y = self.dense(x)
        return y
net = Net()
print(net)
复制代码
# nn.ModuleList作为模型容器
# 注意下面中的ModuleList不能用Python中的列表代替。(即不用省略)
复制代码
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.layers = nn.ModuleList([
            nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),
            nn.MaxPool2d(kernel_size = 2,stride = 2),
            nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),
            nn.MaxPool2d(kernel_size = 2,stride = 2),
            nn.Dropout2d(p = 0.1),
            nn.AdaptiveMaxPool2d((1,1)),
            nn.Flatten(),
            nn.Linear(64,32),
            nn.ReLU(),
            nn.Linear(32,1)]
        )
    def forward(self,x):
        for layer in self.layers:
            x = layer(x)
        return x
net = Net()
print(net)
复制代码
# nn.ModuleDict作为模型容器
复制代码
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.layers_dict = nn.ModuleDict({"conv1":nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),
               "pool": nn.MaxPool2d(kernel_size = 2,stride = 2),
               "conv2":nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),
               "dropout": nn.Dropout2d(p = 0.1),
               "adaptive":nn.AdaptiveMaxPool2d((1,1)),
               "flatten": nn.Flatten(),
               "linear1": nn.Linear(64,32),
               "relu":nn.ReLU(),
               "linear2": nn.Linear(32,1)
              })
    def forward(self,x):
        layers = ["conv1","pool","conv2","pool","dropout","adaptive",
                  "flatten","linear1","relu","linear2","sigmoid"]
        for layer in layers:
            x = self.layers_dict[layer](x) # 只找有的 sigmoid是没有的
        return x
net = Net()
print(net)
相关推荐
亚里随笔10 分钟前
L0:让大模型成为通用智能体的强化学习新范式
人工智能·llm·大语言模型·rlhf
白杆杆红伞伞16 分钟前
T01_神经网络
人工智能·深度学习·神经网络
槑槑紫1 小时前
深度学习pytorch整体流程
人工智能·pytorch·深度学习
盼小辉丶1 小时前
TensorFlow深度学习实战——去噪自编码器详解与实现
人工智能·深度学习·tensorflow
胖达不服输1 小时前
「日拱一码」020 机器学习——数据处理
人工智能·python·机器学习·数据处理
吴佳浩1 小时前
Python入门指南-番外-LLM-Fingerprint(大语言模型指纹):从技术视角看AI开源生态的边界与挑战
python·llm·mcp
吴佳浩2 小时前
Python入门指南-AI模型相似性检测方法:技术原理与实现
人工智能·python·llm
叶 落2 小时前
计算阶梯电费
python·python 基础·python 入门
kebijuelun2 小时前
百度文心 4.5 大模型详解:ERNIE 4.5 Technical Report
人工智能·深度学习·百度·语言模型·自然语言处理·aigc
算家计算2 小时前
ComfyUI-v0.3.43本地部署教程:新增 Omnigen 2 支持,复杂图像任务一步到位!
人工智能·开源