pytorch建模的三种方式

复制代码
# 可以使用以下3种方式构建模型:
#
# 1,继承nn.Module基类构建自定义模型。
#
# 2,使用nn.Sequential按层顺序构建模型。
#
# 3,继承nn.Module基类构建模型并辅助应用模型容器进行封装(nn.Sequential,nn.ModuleList,nn.ModuleDict)。
#
# 其中 第1种方式最为常见,第2种方式最简单,第3种方式最为灵活也较为复杂。
复制代码
# 一、继承nn.Module基类构建自定义模型
复制代码
from torch import nn
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3)
        self.pool1 = nn.MaxPool2d(kernel_size = 2,stride = 2)
        self.conv2 = nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5)
        self.pool2 = nn.MaxPool2d(kernel_size = 2,stride = 2)
        self.dropout = nn.Dropout2d(p = 0.1)
        self.adaptive_pool = nn.AdaptiveMaxPool2d((1,1))
        self.flatten = nn.Flatten()
        self.linear1 = nn.Linear(64,32)
        self.relu = nn.ReLU()
        self.linear2 = nn.Linear(32,1)
    def forward(self,x):
        x = self.conv1(x)
        x = self.pool1(x)
        x = self.conv2(x)
        x = self.pool2(x)
        x = self.dropout(x)
        x = self.adaptive_pool(x)
        x = self.flatten(x)
        x = self.linear1(x)
        x = self.relu(x)
        y = self.linear2(x)
        return y
net = Net()
print(net)
#查看参数
from torchkeras import summary
summary(net,input_shape= (3,32,32));

二、使用nn.Sequential按层顺序构建模型 # 利用add_module方法

复制代码
net = nn.Sequential()
net.add_module("conv1",nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3))
net.add_module("pool1",nn.MaxPool2d(kernel_size = 2,stride = 2))
net.add_module("conv2",nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5))
net.add_module("pool2",nn.MaxPool2d(kernel_size = 2,stride = 2))
net.add_module("dropout",nn.Dropout2d(p = 0.1))
net.add_module("adaptive_pool",nn.AdaptiveMaxPool2d((1,1)))
net.add_module("flatten",nn.Flatten())
net.add_module("linear1",nn.Linear(64,32))
net.add_module("relu",nn.ReLU())
net.add_module("linear2",nn.Linear(32,1))
print(net)
复制代码
# 利用变长参数
复制代码
net = nn.Sequential(
    nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),
    nn.MaxPool2d(kernel_size = 2,stride = 2),
    nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),
    nn.MaxPool2d(kernel_size = 2,stride = 2),
    nn.Dropout2d(p = 0.1),
    nn.AdaptiveMaxPool2d((1,1)),
    nn.Flatten(),
    nn.Linear(64,32),
    nn.ReLU(),
    nn.Linear(32,1)
)
print(net)
复制代码
# 三、继承nn.Module基类构建模型并辅助应用模型容器进行封装
# nn.Sequential作为模型容器
复制代码
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),
            nn.MaxPool2d(kernel_size = 2,stride = 2),
            nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),
            nn.MaxPool2d(kernel_size = 2,stride = 2),
            nn.Dropout2d(p = 0.1),
            nn.AdaptiveMaxPool2d((1,1))
        )
        self.dense = nn.Sequential(
            nn.Flatten(),
            nn.Linear(64,32),
            nn.ReLU(),
            nn.Linear(32,1)
        )
    def forward(self,x):
        x = self.conv(x)
        y = self.dense(x)
        return y
net = Net()
print(net)
复制代码
# nn.ModuleList作为模型容器
# 注意下面中的ModuleList不能用Python中的列表代替。(即不用省略)
复制代码
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.layers = nn.ModuleList([
            nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),
            nn.MaxPool2d(kernel_size = 2,stride = 2),
            nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),
            nn.MaxPool2d(kernel_size = 2,stride = 2),
            nn.Dropout2d(p = 0.1),
            nn.AdaptiveMaxPool2d((1,1)),
            nn.Flatten(),
            nn.Linear(64,32),
            nn.ReLU(),
            nn.Linear(32,1)]
        )
    def forward(self,x):
        for layer in self.layers:
            x = layer(x)
        return x
net = Net()
print(net)
复制代码
# nn.ModuleDict作为模型容器
复制代码
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.layers_dict = nn.ModuleDict({"conv1":nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),
               "pool": nn.MaxPool2d(kernel_size = 2,stride = 2),
               "conv2":nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),
               "dropout": nn.Dropout2d(p = 0.1),
               "adaptive":nn.AdaptiveMaxPool2d((1,1)),
               "flatten": nn.Flatten(),
               "linear1": nn.Linear(64,32),
               "relu":nn.ReLU(),
               "linear2": nn.Linear(32,1)
              })
    def forward(self,x):
        layers = ["conv1","pool","conv2","pool","dropout","adaptive",
                  "flatten","linear1","relu","linear2","sigmoid"]
        for layer in layers:
            x = self.layers_dict[layer](x) # 只找有的 sigmoid是没有的
        return x
net = Net()
print(net)
相关推荐
私域实战笔记9 分钟前
SCRM平台对比推荐:以企业微信私域运营需求为核心的参考
大数据·人工智能·企业微信·scrm·企业微信scrm
格林威13 分钟前
AOI在FPC制造领域的检测应用
人工智能·数码相机·计算机视觉·目标跟踪·视觉检测·制造
utmhikari28 分钟前
【GitHub探索】代码开发AI辅助工具trae-agent
人工智能·ai·大模型·llm·github·agent·trae
IT_陈寒42 分钟前
Python数据处理速度慢?5行代码让你的Pandas提速300% 🚀
前端·人工智能·后端
NewCarRen1 小时前
基于健康指标的自动驾驶全系统运行时安全分析方法
人工智能·安全·自动驾驶·预期功能安全
初心丨哈士奇1 小时前
前端Vibe Coding探索:Cursor+MCP打造沉浸式开发流(使用MCP与Cursor Rules让Vibe Coding更快速与精准)
前端·人工智能
徐凤年lll1 小时前
python 初学2
开发语言·python
艾莉丝努力练剑1 小时前
【Git:基本操作】深度解析Git:从初始Git到熟悉基本操作
大数据·linux·c++·人工智能·git·gitee·指令
坚持就完事了1 小时前
解析数据练习(小项目)
python
机器之心1 小时前
上海AI Lab发布混合扩散语言模型SDAR:首个突破6600 tgs的开源扩散语言模型
人工智能·openai