(done) 如何判断一个矩阵是否可逆?

参考视频:https://www.bilibili.com/video/BV15H4y1y737/?spm_id_from=333.337.search-card.all.click\&vd_source=7a1a0bc74158c6993c7355c5490fc600


这个视频里还暗含了一些引理

1.若 AX = XB 且 X 和 A,B 同阶可逆,那么 A 和 B 相似。原因:AX = XB ----> X^(-1)AX = B

2.若 A 有特征值,则 A - (lamda)E (E是单位矩阵) 的特征值全都要减去 (lamda)

3.若 A 有特征值,则 A^(-1) 的特征值是 原来特征值 的倒数

4.若 A 有特征值,则 A* (伴随矩阵) 的特征值是 "原来特征值的积 / 单独原来特征值"

5.若 A 有特征值,则 A^T 的特征值和原来的特征值一样


四种方式判断是否可逆

1.矩阵满秩

2.矩阵对应的行列式 != 0

3.矩阵没有 "特征值等于0" 的情况

4.Ax = 0 仅有零解

相关推荐
醒过来摸鱼2 小时前
9.11 傅里叶变换家族介绍
线性代数·算法·概率论
醒过来摸鱼3 小时前
9.8 贝塞尔曲线
线性代数·算法·numpy
xier_ran11 小时前
Python 切片(Slicing)完全指南:从基础到多维矩阵
开发语言·python·矩阵
lijil16811 小时前
Hypermesh估算发动机缸体质量矩阵
线性代数·矩阵
FanXing_zl1 天前
快速掌握线性代数:核心概念与深度解析
线性代数·算法·机器学习
点云SLAM1 天前
四元数 (Quaternion)微分-四元数导数的矩阵表示推导(8)
线性代数·算法·计算机视觉·矩阵·机器人·slam·四元数
西西弗Sisyphus1 天前
四元数(Quaternion)、叉积(Cross Product)与点积(Dot Product)之间的关系
线性代数·机器学习·行列式·叉积·点积·四元数
YaraMemo1 天前
对称/Hermitian矩阵相关记号
线性代数·5g·矩阵·信息与通信
ChoSeitaku2 天前
线代强化NO7|秩|矩阵的秩|向量组的秩|极大线性无关组|公式
线性代数·矩阵·概率论
不穿格子的程序员2 天前
从零开始写算法——二分-搜索二维矩阵
线性代数·算法·leetcode·矩阵·二分查找