【MATLAB】ICEEMDAN_ MFE_SVM_LSTM 神经网络时序预测算法

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~

1 基本定义

ICEEMDAN是指"改进的完全扩展经验模态分解与自适应噪声"(Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise),它是CEEMDAN的一种改进版本。与CEEMDAN类似,ICEEMDAN也是一种用于分解非线性、非平稳信号的方法,它通过引入自适应噪声来提高分解的准确性和稳定性。

结合MFE(多尺度特征提取)、SVM(支持向量机)和LSTM(长短期记忆神经网络),ICEEMDAN_MFE_SVM_LSTM神经网络时序预测算法可能的工作流程如下:

  1. ICEEMDAN分解:首先,利用ICEEMDAN算法将原始时间序列分解为一系列固有模式函数(IMF)和一个残差序列。这些IMF和残差序列能够更好地表示原始信号在不同频率和时间尺度上的变化。

  2. 多尺度特征提取(MFE):接着,从每个IMF中提取多尺度的特征。这些特征可能包括统计特性、频域特性、时域特性等,以全面描述原始信号的复杂模式。

  3. 支持向量机(SVM):然后,利用提取的多尺度特征和历史数据训练一个SVM模型。SVM模型能够学习并捕捉到数据中的非线性关系,从而实现对未来数据点的初步预测。

  4. 长短期记忆神经网络(LSTM):最后,将SVM的预测结果和多尺度特征作为LSTM的输入,通过LSTM的进一步学习和预测,得到最终的预测结果。LSTM的内部结构使其能够学习到时间序列中的长期依赖关系,从而提高预测的准确性。

综上所述,ICEEMDAN_MFE_SVM_LSTM神经网络时序预测算法结合了多种先进的时序分析技术,通过多阶段的学习和预测,实现对原始时间序列的高精度预测。这种算法在金融市场预测、气象预报、能源消耗预测等领域可能具有广泛的应用前景。然而,由于具体的算法细节和性能表现可能因实现方式和数据集的不同而有所差异,因此在实际应用中需要进行进一步的验证和优化。

2 出图效果

附出图效果如下:

3 代码获取

代码见附件~

相关推荐
爱coding的橙子8 小时前
每日算法刷题Day70:10.13:leetcode 二叉树10道题,用时2h
算法·leetcode·深度优先
搞科研的小刘选手9 小时前
【早稻田大学主办】2026年第三届人工智能与未来教育国际学术会议(AIFE 2026)
人工智能·机器学习·数据挖掘·机器人·未来教育·远程教育·移动学习
Best_Me079 小时前
理解AUROC,AP,F1-scroe,PRO
人工智能·机器学习
ghie90909 小时前
基于MATLAB的遗传算法优化支持向量机实现
算法·支持向量机·matlab
Learn Beyond Limits9 小时前
TensorFlow Implementation of Content-Based Filtering|基于内容过滤的TensorFlow实现
人工智能·python·深度学习·机器学习·ai·tensorflow·吴恩达
朝新_9 小时前
【优选算法】第一弹——双指针(上)
算法
艾莉丝努力练剑10 小时前
【C++STL :stack && queue (一) 】STL:stack与queue全解析|深入使用(附高频算法题详解)
linux·开发语言·数据结构·c++·算法
叶楊10 小时前
PEFT适配器加载
人工智能·深度学习·机器学习
CoovallyAIHub10 小时前
ICLR 2026 惊现 SAM 3,匿名提交,实现“概念分割”,CV领域再迎颠覆性突破?
深度学习·算法·计算机视觉
IT古董10 小时前
【第五章:计算机视觉-计算机视觉在工业制造领域中的应用】1.工业缺陷分割-(2)BiseNet系列算法详解
算法·计算机视觉·制造