opencv判断灰化情况

目的

先说说理论:

在图像处理中,用RGB三个分量(R:Red,G:Green,B:Blue),即红、绿、蓝三原色来表示真彩色,R分量,G分量,B分量的取值范围均为0~255,比如电脑屏幕上的一个红色的像素点的三个分量的值分别为:255,0,0。

那么什么叫图片的灰度化呢?其实很简单,就是让像素点矩阵中的每一个像素点都满足下面的关系:R=G=B(就是红色变量的值,绿色变量的值,和蓝色变量的值,这三个值相等,"="的意思不是程序语言中的赋值,是数学中的相等),此时的这个值叫做灰度值。

这是理论,实际在Opencv中,灰度化就是单通道图了,因为RGB都一样了,没必要都存储了。

再说说具体目的:

目的就是判断一个图片是否灰化了。

网上,包括,AI上很多方法都不行。

分析

先把一张简单的图片进行灰化操作:

cpp 复制代码
void productGrayImage()
{
    cv::Mat image(10, 10, CV_8UC3);
    // 遍历图像的每个像素
    for (int x = 0; x < image.rows; ++x) {
        for (int y = 0; y < image.cols; ++y) {
            // 获取像素的指针
            cv::Vec3b& pixel = image.at<cv::Vec3b>(x, y);
            // 为BGR通道分别赋值
            pixel[0] = 255; // 蓝色通道 (B)
            pixel[1] = 9; // 绿色通道 (G)
            pixel[2] = 10;   // 红色通道 (R)
        }
    }
    image.at<cv::Vec3b>(0, 0)[0] = 255;
    image.at<cv::Vec3b>(0, 0)[1] = 255;
    image.at<cv::Vec3b>(0, 0)[2] = 255;
    printf("image.type=%d\n", image.type());
    // 显示图像
    cv::imshow("Colored Image", image);
    cv::cvtColor(image, image, cv::COLOR_BGR2GRAY);
    printf("image.type=%d\n", image.type());
    for (int x = 0; x < image.rows; ++x)
    {
        for (int y = 0; y < image.cols; ++y)
        {
            // 获取像素的指针
           int pixel = image.at<uchar>(x, y);
           printf("%d ",pixel);
        }
        printf("\n");
    }
//    cv::imwrite("gray.jpg", image);
    cv::imshow("gray Image", image);
    cv::imwrite("gray.bmp", image);
}

运行情况:

生成gray.bmp的情况:

下面判断是否灰化:

cpp 复制代码
void judgeGrayImageInfo(QString imagePath)
{
    //cv::Mat image = cv::imread(imagePath.toStdString(), cv::IMREAD_GRAYSCALE); // 加载图像
    QImage image = QImage(imagePath);
    qDebug()<<"image.colorCount="<<image.colorCount();
    qDebug()<<"image.format="<<image.format();
    cv::Mat mat = cv::imread(imagePath.toStdString()); // 加载图像
    qDebug()<<"mat.type="<<mat.type();
    for (int i = 0; i < mat.rows; i++)
    {
        for (int j = 0; j < mat.cols; j++)
        {
            if(mat.type() == 16)
            {
                cv::Vec3b pixel = mat.at<cv::Vec3b>(i, j);
                printf("%d,%d,%d ", pixel[0], pixel[1], pixel[2]);
            }
            else
            {
                int pixel = mat.at<uchar>(i, j);
                printf("%d ", pixel);
            }
        }
        printf("\n");
    }
    if (isGrayImage(mat)) {
        std::cout << "The image is grayscale." << std::endl;
    } else {
        std::cout << "The image is not grayscale." << std::endl;
    }
    cv::imshow("gray Image", mat);
    cv::Mat mats[3];
    split(mat,mats);
    cv::imshow("gray gray Image", mat);
    mat = mats[0];
    int uniqueColors = cv::countNonZero(mat);
     qDebug()<<"uniqueColors="<<uniqueColors;
     qDebug()<<"mat.type="<<mat.type();
     if(mat.type() == 0)
     {
         mat.at<uchar>(0, 1) = 255;
         mat.at<uchar>(0, 2) = 255;
     }
     for (int i = 0; i < mat.rows; i++)
     {
         for (int j = 0; j < mat.cols; j++)
         {
             if(mat.type() == 16)
             {
                 cv::Vec3b pixel = mat.at<cv::Vec3b>(i, j);
                 printf("%d,%d,%d ", pixel[0], pixel[1], pixel[2]);
             }
             else
             {
                 int pixel = mat.at<uchar>(i, j);
                 printf("%d ", pixel);
             }
         }
         printf("\n");
     }
}

运行情况:


可以见得,能正确判断是否灰化

总结

灰化是怎么判断的呢?

灰化图在opencv中是单通道图,但保存时,会转化成RGB模式的图。

所以,再加载,通过通道数,判断是否是灰度图,这样是不对的。

解决方法:

首先,一个图片在保存时,其实是以RGB模式保存的,这也是操作系统默认的保存方式。

那一个灰化图在保存时,会默认转化为RGB模式,怎么转化,其就是把一个灰化值重复为三份,分别对应RGB,这样就可以了。

如图所示:

知道这个情况了:

就知道如何判断一个图是否灰化了:

那就是:R=G=B就可以了。

具体代码见:

https://download.csdn.net/download/maokexu123/88862864

相关推荐
Python_Study20251 分钟前
工程材料企业如何通过智慧获客软件破解市场困局:方法论、架构与实践
大数据·网络·数据结构·人工智能·架构
紧固件研究社5 分钟前
紧固件制造设备基础知识大全
人工智能·制造·紧固件
DN202010 分钟前
AI销售机器人优质生产厂家
人工智能·机器人
南山乐只11 分钟前
Qwen Code + OpenSpec 实战指南:AI 驱动开发的从安装到落地
java·人工智能·后端
jonssonyan18 分钟前
我又发布新作品了,PetPhoto:一键生成 AI 宠物写真
人工智能·个人开发·宠物
AI科技星20 分钟前
从质能关系到时空几何:光速飞行理论的框架对比与逻辑验证
服务器·人工智能·线性代数·算法·矩阵
newsxun21 分钟前
科技为刃,破界解锁全生命周期营养新时代
大数据·人工智能·科技
WJSKad123532 分钟前
基于改进YOLO11的超市商品与电子设备多类别目标检测方法C3k2-ConvAttn
人工智能·目标检测·计算机视觉
wangmengxxw1 小时前
SpringAi-mcp高德
人工智能·高德·springai·mcp
丝瓜蛋汤1 小时前
Proof of the contraction mapping theorem
人工智能·算法