2024.2.25 -ElasticSearch 进阶

倒排索引

Elasticsearch的倒排索引机制是通过将文档中出现的词汇与它们所在的文档ID关联起来,实现快速查找包含特定词汇的文档。下面是一个具体的例子来说明倒排索引的工作原理:

假设我们有一个简单的文章集合,包含以下三篇文章:

  1. 文章A:标题为"新冠病毒疫情最新动态",内容为"关于全球COVID-19疫情的最新进展报告"

  2. 文章B:标题为"春季流感预防措施",内容为"如何在春季有效预防流感病毒传播"

  3. 文章C:标题为"疫苗接种的重要性",内容为"讨论不同类型的疫苗及其在防疫中的关键作用"

**构建倒排索引过程:**

对于每个文档,Elasticsearch会执行以下步骤:

  • 分词(Tokenization):对文档的内容进行分词处理。例如,文章A的标题和内容分别会被分成如下的关键词:

  • 标题:"新冠"、"病毒"、"疫情"、"最新"、"动态"

  • 内容:"全球"、"COVID-19"、"疫情"、"最新"、"进展"、"报告"

  • 创建倒排索引条目:

  • 对于每个唯一词汇,记录它出现在哪些文档以及在文档中的位置信息:

  • "新冠" -> [文档A, 标题]

  • "病毒" -> [文档A, 标题], [文档A, 内容]

  • "疫情" -> [文档A, 标题], [文档A, 内容]

  • ...

  • "预防" -> [文档B, 标题]

  • "疫苗" -> [文档C, 标题]

**查询使用倒排索引:**

现在,如果我们想要搜索包含关键词"疫情"的所有文章,Elasticsearch可以直接查看倒排索引,找到关键词"疫情"对应的文档列表,即:

  • "疫情" -> [文档A, 标题], [文档A, 内容]

因此,搜索引擎立即知道文档A包含了这个词,并且可以在毫秒级的时间内返回搜索结果。

总结来说,Elasticsearch的倒排索引使得无需扫描整个文档集合就能迅速定位到含有特定词汇的文档,极大地提高了全文检索的速度和效率。

ES的架构

角色:client Esmaster

相关推荐
Coder个人博客5 小时前
Linux6.19-ARM64 mm mmu子模块深入分析
大数据·linux·车载系统·系统架构·系统安全·鸿蒙系统
财经三剑客10 小时前
AI元年,春节出行安全有了更好的答案
大数据·人工智能·安全
岁岁种桃花儿10 小时前
Flink CDC从入门到上天系列第一篇:Flink CDC简易应用
大数据·架构·flink
TOPGUS10 小时前
谷歌SEO第三季度点击率趋势:榜首统治力的衰退与流量的去中心化趋势
大数据·人工智能·搜索引擎·去中心化·区块链·seo·数字营销
2501_9336707911 小时前
2026 高职大数据与会计专业零基础能考的证书有哪些?
大数据
ClouderaHadoop11 小时前
CDH集群机房搬迁方案
大数据·hadoop·cloudera·cdh
TTBIGDATA11 小时前
【Atlas】Ambari 中 开启 Kerberos + Ranger 后 Atlas Hook 无权限访问 Kafka Topic:ATLAS_HOOK
大数据·kafka·ambari·linq·ranger·knox·bigtop
程序员清洒12 小时前
CANN模型部署:从云端到端侧的全场景推理优化实战
大数据·人工智能
lili-felicity12 小时前
CANN多设备协同推理:从单机到集群的扩展之道
大数据·人工智能
pearbing13 小时前
天猫UV量提高实用指南:找准方向,稳步突破流量瓶颈
大数据·uv·天猫uv量提高·天猫uv量·uv量提高·天猫提高uv量