leetcode hot100 买卖股票的最佳时机二

注意,本题是针对股票可以进行多次交易,但是下次买入的时候必须保证上次买入的已经卖出才可以。

动态规划可以解决整个股票买卖系列问题。

dp数组含义:

dp[i][0]表示第i天不持有股票的最大现金

dp[i][1]表示第i天持有股票的最大现金

递归公式:

由于dp[i][0]表示第i天不持有股票,可能是第i-1天就没有股票,则是dp[i-1][0],也可能是第i-1天持有股票,然后第i天把股票卖了,则是dp[i-1][1]+prices[i]。二者取最大值,即是第i天不持有股票的最大现金。dp[i][1]表示第i天持有股票,则可能是第i-1天就持有股票,dp[i-1][1],也可能是第i-1天没有股票,然后第i天买入的dp[i-1][0]-prices[i]。二者取最大值即可。

初始化:

dp[0][0]表示第0天不持有股票,则为0

dp[0][1]表示第0天持有股票,则此时应该是-prices[0]

遍历顺序:

我们根据递推公式可以发现,是由前一天推出的后一天,所以我们从前往后直接递推即可。

打印dp数组:

注意,这里我们应该打印最后一天不持有股票的值,也就是dp[prices.length-1][0]。因为我们是从下标0开始的,所以最后一天应该是prices.length-1,不持有股票肯定比持有股票钱多,因为股票没有卖掉在手里肯定是算钱的。

复制代码
// 动态规划
class Solution 
    // 实现1:二维数组存储
    // 可以将每天持有与否的情况分别用 dp[i][0] 和 dp[i][1] 来进行存储
    // 时间复杂度:O(n),空间复杂度:O(n)
    public int maxProfit(int[] prices) {
        int n = prices.length;
        int[][] dp = new int[n][2];     // 创建二维数组存储状态
        dp[0][0] = 0;                   // 初始状态
        dp[0][1] = -prices[0];
        for (int i = 1; i < n; ++i) {
            dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i]);    // 第 i 天,没有股票
            dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i]);    // 第 i 天,持有股票
        }
        return dp[n - 1][0];    // 卖出股票收益高于持有股票收益,因此取[0]
    }
}
相关推荐
斯汤雷29 分钟前
Matlab绘图案例,设置图片大小,坐标轴比例为黄金比
数据库·人工智能·算法·matlab·信息可视化
云 无 心 以 出 岫1 小时前
贪心算法QwQ
数据结构·c++·算法·贪心算法
渗透测试老鸟-九青1 小时前
面试经验分享 | 成都渗透测试工程师二面面经分享
服务器·经验分享·安全·web安全·面试·职场和发展·区块链
俏布斯1 小时前
算法日常记录
java·算法·leetcode
独好紫罗兰1 小时前
洛谷题单3-P5719 【深基4.例3】分类平均-python-流程图重构
开发语言·python·算法
SheepMeMe2 小时前
蓝桥杯2024省赛PythonB组——日期问题
python·算法·蓝桥杯
随便昵称2 小时前
蓝桥杯专项复习——前缀和和差分
c++·算法·前缀和·蓝桥杯
脑子慢且灵2 小时前
蓝桥杯冲刺:一维前缀和
算法·leetcode·职场和发展·蓝桥杯·动态规划·一维前缀和
姜威鱼2 小时前
蓝桥杯python编程每日刷题 day 21
数据结构·算法·蓝桥杯
CYRUS STUDIO2 小时前
Unidbg Trace 反 OLLVM 控制流平坦化(fla)
android·汇编·算法·网络安全·逆向·ollvm