注意,本题是针对股票可以进行多次交易,但是下次买入的时候必须保证上次买入的已经卖出才可以。
动态规划可以解决整个股票买卖系列问题。
dp数组含义:
dp[i][0]表示第i天不持有股票的最大现金
dp[i][1]表示第i天持有股票的最大现金
递归公式:
由于dp[i][0]表示第i天不持有股票,可能是第i-1天就没有股票,则是dp[i-1][0],也可能是第i-1天持有股票,然后第i天把股票卖了,则是dp[i-1][1]+prices[i]。二者取最大值,即是第i天不持有股票的最大现金。dp[i][1]表示第i天持有股票,则可能是第i-1天就持有股票,dp[i-1][1],也可能是第i-1天没有股票,然后第i天买入的dp[i-1][0]-prices[i]。二者取最大值即可。
初始化:
dp[0][0]表示第0天不持有股票,则为0
dp[0][1]表示第0天持有股票,则此时应该是-prices[0]
遍历顺序:
我们根据递推公式可以发现,是由前一天推出的后一天,所以我们从前往后直接递推即可。
打印dp数组:
注意,这里我们应该打印最后一天不持有股票的值,也就是dp[prices.length-1][0]。因为我们是从下标0开始的,所以最后一天应该是prices.length-1,不持有股票肯定比持有股票钱多,因为股票没有卖掉在手里肯定是算钱的。
// 动态规划
class Solution
// 实现1:二维数组存储
// 可以将每天持有与否的情况分别用 dp[i][0] 和 dp[i][1] 来进行存储
// 时间复杂度:O(n),空间复杂度:O(n)
public int maxProfit(int[] prices) {
int n = prices.length;
int[][] dp = new int[n][2]; // 创建二维数组存储状态
dp[0][0] = 0; // 初始状态
dp[0][1] = -prices[0];
for (int i = 1; i < n; ++i) {
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i]); // 第 i 天,没有股票
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i]); // 第 i 天,持有股票
}
return dp[n - 1][0]; // 卖出股票收益高于持有股票收益,因此取[0]
}
}