XGB-12:在 Kubernetes 上进行分布式 XGBoost 训练

通过 Kubeflow XGBoost Training Operator 支持在 Kubernetes 上进行分布式 XGBoost 训练和批量预测。

操作步骤

为在 Kubernetes 集群上运行 XGBoost 作业,执行以下步骤:

  1. 在 Kubernetes 集群上安装 XGBoost Operator。

    XGBoost Operator 旨在管理 XGBoost 作业的调度和监控。按照安装指南安装 XGBoost Operator。

  2. 编写由 XGBoost Operator 执行的应用程序代码。

    • 要使用 XGBoost Operator,需要编写几个 Python 脚本,实现 XGBoost 的分布式训练逻辑。请参考鸢尾花分类示例
    • 数据读取器/写入器:根据所选数据源的具体要求,需要基于数据读取器和写入器的实现。例如,如果数据集存储在 Hive 表中,必须根据 worker 的索引编写代码从 Hive 表中读取或写入数据。
    • 模型持久化:在鸢尾花分类示例中,模型存储在 Alibaba OSS 中。如果要将模型存储在其他存储系统(如 Amazon S3 或 Google NFS)中,需要根据所选存储系统的要求实现模型持久化逻辑。
  3. 使用 YAML 文件配置 XGBoost 作业。

    YAML 文件用于配置 XGBoost 作业的计算资源和运行环境,例如工作器/主节点的数量和 CPU/GPU 的数量。请参考此 YAML 模板进行配置。

  4. 将 XGBoost 作业提交到 Kubernetes 集群。

    使用 kubectl 提交分布式 XGBoost 作业,如此处所示。

参考

相关推荐
Yan-英杰11 分钟前
百度搜索和文心智能体接入DeepSeek满血版——AI搜索的新纪元
图像处理·人工智能·python·深度学习·deepseek
weixin_307779131 小时前
Azure上基于OpenAI GPT-4模型验证行政区域数据的设计方案
数据仓库·python·云计算·aws
玩电脑的辣条哥2 小时前
Python如何播放本地音乐并在web页面播放
开发语言·前端·python
多想和从前一样5 小时前
Django 创建表时 “__str__ ”方法的使用
后端·python·django
斯普信专业组5 小时前
Kafka偏移量管理全攻略:从基础概念到高级操作实战
分布式·kafka
小喵要摸鱼6 小时前
【Pytorch 库】自定义数据集相关的类
pytorch·python
bdawn6 小时前
深度集成DeepSeek大模型:WebSocket流式聊天实现
python·websocket·openai·api·实时聊天·deepseek大模型·流式输出
Jackson@ML6 小时前
Python数据可视化简介
开发语言·python·数据可视化
mosquito_lover16 小时前
怎么把pyqt界面做的像web一样漂亮
前端·python·pyqt
怠惰_u7 小时前
使用Redis实现分布式锁,基于原本单体系统进行业务改造
数据库·redis·分布式