暴力枚举刷题7-涂国旗

题目来源:涂国旗 - 洛谷
解题思路:

要解决这个问题,我们可以使用暴力枚举方法来找到涂色最少的方案。基本思路是枚举白色区域和蓝色区域的边界行,然后计算将布匹涂成合法国旗所需改变的最少格数。

步骤如下:

  1. 遍历所有可能的白色区域和蓝色区域的边界。假设白色区域的最后一行是 wEnd,蓝色区域的最后一行是 bEnd。则,wEnd 从第1行遍历到第 n-2 行(至少留出一行给蓝色和红色),bEndwEnd + 1 遍历到第 n-1 行(至少留出一行给红色)。
  2. 对于每一种边界的枚举,计算需要改变的格子数。具体来说,对于白色区域(从第1行到 wEnd 行),计算非白色格子的数量;对于蓝色区域(从 wEnd + 1 行到 bEnd 行),计算非蓝色格子的数量;对于红色区域(从 bEnd + 1 行到最后一行),计算非红色格子的数量。
  3. 在所有可能的边界中找到需要改变格子数最少的方案。
cpp 复制代码
#include<iostream>

using namespace std;

int n, m;
char a[51][51];

int main()
{
	cin >> n >> m;
	for (int i = 0; i < n; i++)
	{
		for (int j = 0; j < m; j++)
		{
			cin >> a[i][j];// 输入旗帜的当前状态
		}
	}
	int ans = 1e9; // 初始化答案为一个很大的数
	//枚举白色区域和蓝色区域的边界
	for (int wEnd = 0; wEnd < n - 2; wEnd++)
	{
		for (int bEnd = wEnd + 1; bEnd < n - 1; bEnd++)
		{
			int count = 0;// 需要改变的格子数
			// 计算需要改变的格子数
			for (int i = 0; i <= wEnd; i++)  白色区域
			{
				for (int j = 0; j < m; j++)
					count += a[i][j] != 'W';
			}
			for (int i = wEnd + 1; i <= bEnd; i++) 蓝色区域
			{
				for (int j = 0; j < m; j++)
				{
					count += a[i][j] != 'B';
				}
			}
			for (int i = bEnd + 1; i <n; i++) 红色区域
			{
				for (int j = 0; j < m; j++)
				{
					count += a[i][j] != 'R';
				}
			}
			ans = min(ans, count);// 更新最少需要改变的格子数
		}
	}

	cout << ans << endl; // 输出结果
	return 0;
}
相关推荐
EverestVIP17 分钟前
C++中的mutable关键字如何使用
c++
黑客思维者25 分钟前
智能配电系统用户敏感数据脱敏详细设计:从静态遮盖到动态策略
c++·python·嵌入式系统·数据脱敏·智能配电系统
点云SLAM40 分钟前
Boost库中Math 模块的根搜索 / 根求解和示例
数学·算法·数值优化·根搜索 / 根求解和示例·函数根求解·boost模块
我搞slam42 分钟前
EM Planner算法与代码解读
算法
GoWjw1 小时前
内存管理【3】
linux·服务器·c++·ubuntu
CodeWizard~1 小时前
线性筛法求解欧拉函数以及欧拉反演
算法
45288655上山打老虎1 小时前
右值引用和移动语义
算法
liulilittle2 小时前
C++ 并发双阶段队列设计原理与实现
linux·开发语言·c++·windows·算法·线程·并发
森G2 小时前
五、Linux字符设备驱动
linux·arm开发·c++·ubuntu