暴力枚举刷题7-涂国旗

题目来源:涂国旗 - 洛谷
解题思路:

要解决这个问题,我们可以使用暴力枚举方法来找到涂色最少的方案。基本思路是枚举白色区域和蓝色区域的边界行,然后计算将布匹涂成合法国旗所需改变的最少格数。

步骤如下:

  1. 遍历所有可能的白色区域和蓝色区域的边界。假设白色区域的最后一行是 wEnd,蓝色区域的最后一行是 bEnd。则,wEnd 从第1行遍历到第 n-2 行(至少留出一行给蓝色和红色),bEndwEnd + 1 遍历到第 n-1 行(至少留出一行给红色)。
  2. 对于每一种边界的枚举,计算需要改变的格子数。具体来说,对于白色区域(从第1行到 wEnd 行),计算非白色格子的数量;对于蓝色区域(从 wEnd + 1 行到 bEnd 行),计算非蓝色格子的数量;对于红色区域(从 bEnd + 1 行到最后一行),计算非红色格子的数量。
  3. 在所有可能的边界中找到需要改变格子数最少的方案。
cpp 复制代码
#include<iostream>

using namespace std;

int n, m;
char a[51][51];

int main()
{
	cin >> n >> m;
	for (int i = 0; i < n; i++)
	{
		for (int j = 0; j < m; j++)
		{
			cin >> a[i][j];// 输入旗帜的当前状态
		}
	}
	int ans = 1e9; // 初始化答案为一个很大的数
	//枚举白色区域和蓝色区域的边界
	for (int wEnd = 0; wEnd < n - 2; wEnd++)
	{
		for (int bEnd = wEnd + 1; bEnd < n - 1; bEnd++)
		{
			int count = 0;// 需要改变的格子数
			// 计算需要改变的格子数
			for (int i = 0; i <= wEnd; i++)  白色区域
			{
				for (int j = 0; j < m; j++)
					count += a[i][j] != 'W';
			}
			for (int i = wEnd + 1; i <= bEnd; i++) 蓝色区域
			{
				for (int j = 0; j < m; j++)
				{
					count += a[i][j] != 'B';
				}
			}
			for (int i = bEnd + 1; i <n; i++) 红色区域
			{
				for (int j = 0; j < m; j++)
				{
					count += a[i][j] != 'R';
				}
			}
			ans = min(ans, count);// 更新最少需要改变的格子数
		}
	}

	cout << ans << endl; // 输出结果
	return 0;
}
相关推荐
Aaron15882 分钟前
通用的通感控算存一体化平台设计方案
linux·人工智能·算法·fpga开发·硬件工程·射频工程·基带工程
dvvvvvw11 分钟前
展开式求和.c
c语言
就是ping不通的蛋黄派12 分钟前
数据结构与算法—线性表(C++描述)
数据结构·c++
_w_z_j_17 分钟前
拼三角(枚举)
算法
hweiyu0032 分钟前
数据结构和算法分类
数据结构·算法·分类
M K Q34 分钟前
2025.9 GESP三级 日历制作
算法
AI小云36 分钟前
【数据操作与可视化】Pandas数据处理-Series数据结构
开发语言·数据结构·python·numpy·pandas
x***J3481 小时前
算法竞赛训练方法
算法
前端小L1 小时前
图论专题(十六):“依赖”的死结——用拓扑排序攻克「课程表」
数据结构·算法·深度优先·图论·宽度优先
前端小L1 小时前
图论专题(十三):“边界”的救赎——逆向思维解救「被围绕的区域」
数据结构·算法·深度优先·图论