Android-机器学习组件-自定义模型

前言

通过 Android 机器学习组件-图像标签初探 - 掘金 (juejin.cn) 我们了解了如何使用基础模型实现图像标签功能。但是,基础模型所能识别的标签是有限的,是基于特定的数据集进行训练的。而实际业务场景中,需要我们结合自身的数据,需要量身定制的模型,以便模型推理的结果更符合我们实际的需求,下面就来了解一下如何使用自定义模型。

自定义模型

相比于标准模型,使用自定义模型有更多的灵活性,可以通过参数定制更多的内容。

使用自定义模型获取图像标签

  • 首先,使用自定义模型时需要依赖支持自定义模型的组件 com.google.mlkit:image-labeling-custom
  • 将模型文件放在项目代码 assets 目录下,模型文件(通常以 .tflite 或 .lite 结尾)
  • 完成 ImageLabeler 的初始化
kotlin 复制代码
    private fun initCustomLabeler() {
        val localModel = LocalModel.Builder().setAssetFilePath("model.tflite").build()
        val customImageLabelerOptions =
            CustomImageLabelerOptions.Builder(localModel).setConfidenceThreshold(0.5f)
                .setMaxResultCount(15).build()
        labeler = ImageLabeling.getClient(customImageLabelerOptions)
    }
  • 这里 setConfidenceThreshold 顾名思义,就是配置可信度最小值,小于这个可信度的结果是不会返回的
  • setMaxResultCount 返回标签个数集合的最大值

创建好 ImageLabeler 了之后,具体使用方式已经在Android 机器学习组件-图像标签初探 - 掘金 (juejin.cn)中说过了,我们用相同的图片再试一下。这里使用的自定义模型是有 Google 训练的 mobilenet_v3, 是一个专门用于图像分类相关任务的模型。

shell 复制代码
17:07:37.195 ImageLabelHelper         I  text=stage     ,confidence=8.178474  ,index=820 ,uri=content://media/external/images/media/101508
17:07:37.195 ImageLabelHelper         I  text=volcano   ,confidence=7.372629  ,index=981 ,uri=content://media/external/images/media/101508
17:07:37.195 ImageLabelHelper         I  text=spotlight ,confidence=5.266957  ,index=819 ,uri=content://media/external/images/media/101508
17:07:37.196 ImageLabelHelper         I  text=alp       ,confidence=4.521148  ,index=971 ,uri=content://media/external/images/media/101508
17:07:37.196 ImageLabelHelper         I  text=electric guitar,confidence=4.404194  ,index=547 ,uri=content://media/external/images/media/101508
17:07:37.197 ImageLabelHelper         I  text=geyser    ,confidence=4.381730  ,index=975 ,uri=content://media/external/images/media/101508
17:07:37.197 ImageLabelHelper         I  text=maypole   ,confidence=4.266276  ,index=646 ,uri=content://media/external/images/media/101508
17:07:37.197 ImageLabelHelper         I  text=planetarium,confidence=4.118463  ,index=728 ,uri=content://media/external/images/media/101508
17:07:37.197 ImageLabelHelper         I  text=ballplayer,confidence=4.013018  ,index=982 ,uri=content://media/external/images/media/101508
17:07:37.198 ImageLabelHelper         I  text=torch     ,confidence=3.877848  ,index=863 ,uri=content://media/external/images/media/101508
17:07:37.198 ImageLabelHelper         I  text=steam locomotive,confidence=3.836026  ,index=821 ,uri=content://media/external/images/media/101508
17:07:37.198 ImageLabelHelper         I  text=fountain  ,confidence=3.698731  ,index=563 ,uri=content://media/external/images/media/101508
17:07:37.199 ImageLabelHelper         I  text=unicycle  ,confidence=3.564799  ,index=881 ,uri=content://media/external/images/media/101508
17:07:37.199 ImageLabelHelper         I  text=jigsaw puzzle,confidence=3.548051  ,index=612 ,uri=content://media/external/images/media/101508
17:07:37.199 ImageLabelHelper         I  text=crash helmet,confidence=3.526286  ,index=519 ,uri=content://media/external/images/media/101508
shell 复制代码
17:09:00.118 ImageLabelHelper         I  text=basketball,confidence=10.063719 ,index=431 ,uri=content://media/external/images/media/101507
17:09:00.119 ImageLabelHelper         I  text=unicycle  ,confidence=5.737387  ,index=881 ,uri=content://media/external/images/media/101507
17:09:00.119 ImageLabelHelper         I  text=volleyball,confidence=5.126340  ,index=891 ,uri=content://media/external/images/media/101507
17:09:00.119 ImageLabelHelper         I  text=mountain bike,confidence=5.038583  ,index=672 ,uri=content://media/external/images/media/101507
17:09:00.120 ImageLabelHelper         I  text=bow       ,confidence=4.851575  ,index=457 ,uri=content://media/external/images/media/101507
17:09:00.120 ImageLabelHelper         I  text=comic book,confidence=4.779339  ,index=918 ,uri=content://media/external/images/media/101507
17:09:00.120 ImageLabelHelper         I  text=toilet seat,confidence=4.755874  ,index=862 ,uri=content://media/external/images/media/101507
17:09:00.120 ImageLabelHelper         I  text=racket    ,confidence=4.598331  ,index=753 ,uri=content://media/external/images/media/101507
17:09:00.121 ImageLabelHelper         I  text=chain saw ,confidence=4.398981  ,index=492 ,uri=content://media/external/images/media/101507
17:09:00.121 ImageLabelHelper         I  text=drum      ,confidence=4.151714  ,index=542 ,uri=content://media/external/images/media/101507
17:09:00.121 ImageLabelHelper         I  text=shield    ,confidence=3.973551  ,index=788 ,uri=content://media/external/images/media/101507
17:09:00.122 ImageLabelHelper         I  text=toyshop   ,confidence=3.807693  ,index=866 ,uri=content://media/external/images/media/101507
17:09:00.122 ImageLabelHelper         I  text=bobsled   ,confidence=3.746702  ,index=451 ,uri=content://media/external/images/media/101507
17:09:00.122 ImageLabelHelper         I  text=tricycle  ,confidence=3.694458  ,index=871 ,uri=content://media/external/images/media/101507
17:09:00.122 ImageLabelHelper         I  text=balance beam,confidence=3.685299  ,index=417 ,uri=content://media/external/images/media/101507
shell 复制代码
17:10:03.945 ImageLabelHelper         I  text=seashore  ,confidence=7.280358  ,index=979 ,uri=content://media/external/images/media/3719
17:10:03.946 ImageLabelHelper         I  text=aircraft carrier,confidence=5.773122  ,index=404 ,uri=content://media/external/images/media/3719
17:10:03.946 ImageLabelHelper         I  text=alp       ,confidence=5.731852  ,index=971 ,uri=content://media/external/images/media/3719
17:10:03.946 ImageLabelHelper         I  text=obelisk   ,confidence=5.652296  ,index=683 ,uri=content://media/external/images/media/3719
17:10:03.947 ImageLabelHelper         I  text=breakwater,confidence=5.417479  ,index=461 ,uri=content://media/external/images/media/3719
17:10:03.947 ImageLabelHelper         I  text=traffic light,confidence=5.388855  ,index=921 ,uri=content://media/external/images/media/3719
17:10:03.947 ImageLabelHelper         I  text=maze      ,confidence=5.183353  ,index=647 ,uri=content://media/external/images/media/3719
17:10:03.948 ImageLabelHelper         I  text=go-kart   ,confidence=5.009349  ,index=574 ,uri=content://media/external/images/media/3719
17:10:03.948 ImageLabelHelper         I  text=lakeside  ,confidence=4.928476  ,index=976 ,uri=content://media/external/images/media/3719
17:10:03.948 ImageLabelHelper         I  text=unicycle  ,confidence=4.758537  ,index=881 ,uri=content://media/external/images/media/3719
17:10:03.948 ImageLabelHelper         I  text=racer     ,confidence=4.605724  ,index=752 ,uri=content://media/external/images/media/3719
17:10:03.949 ImageLabelHelper         I  text=triumphal arch,confidence=4.504304  ,index=874 ,uri=content://media/external/images/media/3719
17:10:03.949 ImageLabelHelper         I  text=promontory,confidence=4.499630  ,index=977 ,uri=content://media/external/images/media/3719
17:10:03.949 ImageLabelHelper         I  text=crane     ,confidence=4.449341  ,index=518 ,uri=content://media/external/images/media/3719
17:10:03.949 ImageLabelHelper         I  text=trailer truck,confidence=4.262432  ,index=868 ,uri=content://media/external/images/media/3719

可以看到使用这个自定义模型,相比与基础模型,返回的图像标签类型更丰富了。同时标签类型索引也和之前的不同了,毕竟这个模型更大了,会有新的标签映射关系。

如何获取自定义模型

如果要使用自定义模型组件,就需要使用自己的模型。那么模型文件从哪里来呢?这个一般有两种方式

  1. 从网上获取别人训练好模型,比如直接从 TenserFlow Hub 下载别人训练好的模型。

这里需要注意的是,从网络上获取模型时要符合 TensorFlow Lite 的规范

选择模式时,从这里选择正确的模型,然后下载即可使用。

  1. 自己进行训练,这种一般是训练通用模型,也就是 PC 端可用的模型,然后转换为 TensorFlow Lite 类型的模型,以便移动端进行使用。许多深度学习框架 PyTorch,Paddle 训练之后的模型,都可以转换为符合 TensorFlow Lite 规范的模型。

    可以参考详细拆解YOLO的导出原理,以tflite格式为例实现Android端的调用

上述相关完整代码可以参考 Matisse

参考

相关推荐
小雷FansUnion1 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp
资讯分享周1 小时前
扣子空间PPT生产力升级:AI智能生成与多模态创作新时代
人工智能·powerpoint
叶子爱分享3 小时前
计算机视觉与图像处理的关系
图像处理·人工智能·计算机视觉
鱼摆摆拜拜3 小时前
第 3 章:神经网络如何学习
人工智能·神经网络·学习
一只鹿鹿鹿3 小时前
信息化项目验收,软件工程评审和检查表单
大数据·人工智能·后端·智慧城市·软件工程
张较瘦_3 小时前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习
cver1233 小时前
野生动物检测数据集介绍-5,138张图片 野生动物保护监测 智能狩猎相机系统 生态研究与调查
人工智能·pytorch·深度学习·目标检测·计算机视觉·目标跟踪
学技术的大胜嗷3 小时前
离线迁移 Conda 环境到 Windows 服务器:用 conda-pack 摆脱硬路径限制
人工智能·深度学习·yolo·目标检测·机器学习
还有糕手3 小时前
西南交通大学【机器学习实验10】
人工智能·机器学习
江瀚视野3 小时前
百度文心大模型4.5系列正式开源,开源会给百度带来什么?
人工智能