【人脸朝向识别与分类预测】基于LVQ神经网络

**课题名称:**基于LVQ神经网络的人脸朝向识别分类

**版本日期:**2024-02-20

**运行方式:**直接运行LVQ0503.m文件

代码获取方式: 私信博主或 QQ:491052175

模型描述:

采集到一组人脸朝向不同角度时的图像,图像来自不同的10个人,每个人5幅图像,人脸的朝向分别是左方,左前方,前方,右前方,右方。通过观察不难法线,当人脸面朝不同方向时,眼睛在图像中的位置差别比较大.因此可以考虑将图片中描述眼睛位置的特征喜喜提取出来作为LVQ神经网络的输入,5个朝向分别用1,2,3,4,5表示,作为LVQ神经网络的输出。通过对训练集的图像进行训练,得到具有预测功能的网络,便可以对任意给出的人脸图像进行朝向判断和识别分类

算法流程:

1.人脸特征向量提取:如设计思路中所述,当人脸朝向不同时,眼睛在图像中的位置会有明显的差别。因此,只需要将描述人眼位置信息的特征向量提取出来即可。方法是将整幅图像划分成6行8列, 人眼的位置信息可以用第2行的8个子矩阵来描述(注意:针对不同大小的图像,划分的网格需稍作修改)边缘检测后8个子短阵中的值为"1"的像萦点个数与人脸朝向有直接关系, 只要分别统计出第2行的8个子短阵中的值为"1"的像素点个数即可。

2.训练集和测试集的产生:为了保证训练集数据的随机性,随机选取图像库中的30隔入脸图像提取出的特征向量作为训练集数据,剩余的20幅人脸图像提取出来的特征向盘作为测试集数据。

3.LVQ神经网络创建:LVQ 神经网络的优点是不需要将输入向量进行归一化、正交化,利用MATLAB自带的神经网络工具箱函数newlvq()可以构建一个LVQ 神经网络。

4.LVQ网络训练:网络创建完毕后, 便可以将训练集输入向量送人到网络中,利用LVQ1 或LVQ2 算法对网络的权值进行调整,直到满足训练、要求迭代终止。

5.人脸识别测试:网络训练收敛后,便可以对测试集数据进行预测,即对测试集的图像进行人脸朝向识别.对于任意给出的图像,只需要将其特征向量提取出来,便可对其进行识别。

LVQ神经网络调用函数

net=newlvq(PR,S1,PC,LR,LF)

PR:输入向量的范围,size(PR) =[R,2], R 为输入向量的维数

S1:竞争层神经元的个数

PC:线性输出层期望类别各自所占的比重

LR:学习速率,默认值为0.01

LF:学习函数,默认为'learnlv1'

**改进方向:**无

待改进方向:

利用智能算法GA,SA,PSO去优化竞争层神经元个数和学习率

特殊说明:

神经网络每一次的预测结果都不相同,为了得到更好的结果,建议多次运行取最佳值

Matlab仿真结果

基于LVQ神经网络的人脸朝向识别精确率:

基于LVQ神经网络的人脸朝向识别分类结果:

基于LVQ神经网络的人脸朝向识别分类预测误差:

相关推荐
Luis Li 的猫猫3 小时前
基于Matlab的人脸识别的二维PCA
开发语言·人工智能·算法·matlab
DesolateGIS1 天前
数学建模:MATLAB强化学习
开发语言·matlab
爱编程的鱼1 天前
MATLAB—从入门到精通的第二天
数据结构·算法·matlab
我爱C编程2 天前
基于SNR估计的自适应码率LDPC编译码算法matlab性能仿真,对比固定码率LDPC的系统传输性能
matlab·snr估计·自适应码率·ldpc编译码
机器学习之心2 天前
基于混合蝴蝶粒子群算法 粒子群算法 蝴蝶算法实现无人机复杂山地环境下航迹规划附matlab代码
算法·matlab·无人机
爱编程的鱼2 天前
Matlab—从入门到精通的第一天
开发语言·matlab
IT猿手2 天前
基于多目标向日葵优化算法(Multi-objective Sunflower Optimization,MOSFO)的移动机器人路径规划研究,MATLAB代码
算法·机器学习·matlab·机器人
楼台的春风2 天前
【Canny 边缘检测详细讲解】
图像处理·人工智能·opencv·算法·计算机视觉·matlab·嵌入式
蚂蚁质量3 天前
在MATLAB环境中,对矩阵拼接(Matrix Concatenation)的测试
matlab·矩阵
听风说雨的人儿4 天前
数学软件Matlab下载|支持Win+Mac网盘资源分享
开发语言·matlab