【人脸朝向识别与分类预测】基于LVQ神经网络

**课题名称:**基于LVQ神经网络的人脸朝向识别分类

**版本日期:**2024-02-20

**运行方式:**直接运行LVQ0503.m文件

代码获取方式: 私信博主或 QQ:491052175

模型描述:

采集到一组人脸朝向不同角度时的图像,图像来自不同的10个人,每个人5幅图像,人脸的朝向分别是左方,左前方,前方,右前方,右方。通过观察不难法线,当人脸面朝不同方向时,眼睛在图像中的位置差别比较大.因此可以考虑将图片中描述眼睛位置的特征喜喜提取出来作为LVQ神经网络的输入,5个朝向分别用1,2,3,4,5表示,作为LVQ神经网络的输出。通过对训练集的图像进行训练,得到具有预测功能的网络,便可以对任意给出的人脸图像进行朝向判断和识别分类

算法流程:

1.人脸特征向量提取:如设计思路中所述,当人脸朝向不同时,眼睛在图像中的位置会有明显的差别。因此,只需要将描述人眼位置信息的特征向量提取出来即可。方法是将整幅图像划分成6行8列, 人眼的位置信息可以用第2行的8个子矩阵来描述(注意:针对不同大小的图像,划分的网格需稍作修改)边缘检测后8个子短阵中的值为"1"的像萦点个数与人脸朝向有直接关系, 只要分别统计出第2行的8个子短阵中的值为"1"的像素点个数即可。

2.训练集和测试集的产生:为了保证训练集数据的随机性,随机选取图像库中的30隔入脸图像提取出的特征向量作为训练集数据,剩余的20幅人脸图像提取出来的特征向盘作为测试集数据。

3.LVQ神经网络创建:LVQ 神经网络的优点是不需要将输入向量进行归一化、正交化,利用MATLAB自带的神经网络工具箱函数newlvq()可以构建一个LVQ 神经网络。

4.LVQ网络训练:网络创建完毕后, 便可以将训练集输入向量送人到网络中,利用LVQ1 或LVQ2 算法对网络的权值进行调整,直到满足训练、要求迭代终止。

5.人脸识别测试:网络训练收敛后,便可以对测试集数据进行预测,即对测试集的图像进行人脸朝向识别.对于任意给出的图像,只需要将其特征向量提取出来,便可对其进行识别。

LVQ神经网络调用函数

net=newlvq(PR,S1,PC,LR,LF)

PR:输入向量的范围,size(PR) =[R,2], R 为输入向量的维数

S1:竞争层神经元的个数

PC:线性输出层期望类别各自所占的比重

LR:学习速率,默认值为0.01

LF:学习函数,默认为'learnlv1'

**改进方向:**无

待改进方向:

利用智能算法GA,SA,PSO去优化竞争层神经元个数和学习率

特殊说明:

神经网络每一次的预测结果都不相同,为了得到更好的结果,建议多次运行取最佳值

Matlab仿真结果

基于LVQ神经网络的人脸朝向识别精确率:

基于LVQ神经网络的人脸朝向识别分类结果:

基于LVQ神经网络的人脸朝向识别分类预测误差:

相关推荐
爱学习的capoo8 小时前
matlab自控仿真【第一弹】❀传递函数和输出时域表达式
开发语言·matlab
HarrietLH11 小时前
Matlab实现任意伪彩色图像可视化显示
图像处理·计算机视觉·matlab
沅_Yuan14 小时前
基于 CNN-SHAP 分析卷积神经网络的多分类预测【MATLAB】
神经网络·matlab·分类·cnn·shap可解释性
机器学习之心18 小时前
分类预测 | Matlab基于AOA-VMD-BiLSTM故障诊断分类预测
matlab·分类·数据挖掘
科研工作站2 天前
【创新算法】改进深度优先搜索算法配合二进制粒子群的配电网故障恢复重构研究
matlab·配电网·故障恢复·改进粒子群·深度优先搜索·33节点
zzc9212 天前
MATLAB仿真生成无线通信网络拓扑推理数据集
开发语言·网络·数据库·人工智能·python·深度学习·matlab
软件算法开发2 天前
基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
matlab·wsn·距离变化·能量开销·动态调整·低功耗拓扑控制开销算法
机器学习之心2 天前
机器学习用于算法交易(Matlab实现)
算法·机器学习·matlab
曹勖之3 天前
UE 5 和simulink联合仿真,如果先在UE5这一端结束Play,过一段时间以后**Unreal Engine 5** 中会出现显存不足错误
matlab·ue5·机器人
曹勖之3 天前
simulink有无现成模块可以实现将三个分开的输入合并为一个[1*3]的行向量输出?
matlab