神经网络系列---池化


文章目录


池化

最大池化

最大池化(Max Pooling)是卷积神经网络中常用的一种池化技术。其操作是:在输入特征图的一个局部窗口内选取最大的值作为该窗口的输出。

数学表达式如下:

考虑一个输入特征图 A A A,并定义一个大小为 f × f f \times f f×f 的池化窗口和步长 s s s。对于输出特征图 M M M 中的元素 M ( i , j ) M(i,j) M(i,j),其值由以下公式确定:

M ( i , j ) = max ⁡ u = 0 f − 1 max ⁡ v = 0 f − 1 A ( i × s + u , j × s + v ) M(i,j) = \max_{u=0}^{f-1} \max_{v=0}^{f-1} A(i \times s + u, j \times s + v) M(i,j)=maxu=0f−1maxv=0f−1A(i×s+u,j×s+v)

其中:

  • M ( i , j ) M(i,j) M(i,j) 是输出特征图的第 ( i , j ) (i,j) (i,j) 个元素。
  • max ⁡ \max max 表示最大值操作。
  • u u u 和 v v v 都是在 [ 0 , f − 1 ] [0, f-1] [0,f−1] 范围内变化的索引,它们用于遍历池化窗口内的每一个元素。
  • s s s 是步长,定义了池化窗口在输入特征图上移动的距离。
  • A ( i × s + u , j × s + v ) A(i \times s + u, j \times s + v) A(i×s+u,j×s+v) 是输入特征图 A A A 中与输出特征图 M ( i , j ) M(i,j) M(i,j) 对应的局部窗口的元素。

这个公式简单地描述了最大池化的操作:对于每个输出元素 M ( i , j ) M(i,j) M(i,j),都在输入特征图 A A A 的相应局部窗口中找到最大的值。

cpp 复制代码
//最大池化
Eigen::MatrixXf Pooling::maxPoolingForward(const Eigen::MatrixXf& input,int m_poolSize,int m_stride)
{
    int outputHeight = (input.rows() - m_poolSize) / m_stride + 1;
    int outputWidth = (input.cols() - m_poolSize) / m_stride + 1;

    Eigen::MatrixXf output(outputHeight, outputWidth);

    for (int i = 0; i < outputHeight; ++i)
    {
        for (int j = 0; j < outputWidth; ++j)
        {
            output(i, j) = input.block(i * m_stride, j * m_stride, m_poolSize, m_poolSize).maxCoeff();
        }
    }

    return output;
}
//最大池化 反向
Eigen::MatrixXf Pooling::maxPoolingBackward(const Eigen::MatrixXf& input, const Eigen::MatrixXf& gradient,int m_poolSize,int m_stride)
{
    Eigen::MatrixXf output = Eigen::MatrixXf::Zero(input.rows(), input.cols());

    int outputHeight = gradient.rows();
    int outputWidth = gradient.cols();

    for (int i = 0; i < outputHeight; ++i)
    {
        for (int j = 0; j < outputWidth; ++j)
        {
            int row,col;
            input.block(i * m_stride, j * m_stride, m_poolSize, m_poolSize).maxCoeff(&row,&col);
            output(i * m_stride + row, j * m_stride + col) += gradient(i, j);

        }
    }

    return output;
}

平均池化

平均池化(Average Pooling)是卷积神经网络中另一种常用的池化技术。其操作是在输入特征图的一个局部窗口内计算所有值的平均值,然后将此平均值作为该窗口的输出。

数学表达式如下:

考虑一个输入特征图 A A A,并定义一个大小为 f × f f \times f f×f 的池化窗口和步长 s s s。对于输出特征图 M M M 中的元素 M ( i , j ) M(i,j) M(i,j),其值由以下公式确定:

M ( i , j ) = 1 f × f ∑ u = 0 f − 1 ∑ v = 0 f − 1 A ( i × s + u , j × s + v ) M(i,j) = \frac{1}{f \times f} \sum_{u=0}^{f-1} \sum_{v=0}^{f-1} A(i \times s + u, j \times s + v) M(i,j)=f×f1∑u=0f−1∑v=0f−1A(i×s+u,j×s+v)

其中:

  • M ( i , j ) M(i,j) M(i,j) 是输出特征图的第 ( i , j ) (i,j) (i,j) 个元素。
  • ∑ \sum ∑ 表示求和操作。
  • u u u 和 v v v 都是在 [ 0 , f − 1 ] [0, f-1] [0,f−1] 范围内变化的索引,它们用于遍历池化窗口内的每一个元素。
  • s s s 是步长,定义了池化窗口在输入特征图上移动的距离。
  • A ( i × s + u , j × s + v ) A(i \times s + u, j \times s + v) A(i×s+u,j×s+v) 是输入特征图 A A A 中与输出特征图 M ( i , j ) M(i,j) M(i,j) 对应的局部窗口的元素。
  • f × f f \times f f×f 是池化窗口的大小。

这个公式描述了平均池化的操作:对于每个输出元素 M ( i , j ) M(i,j) M(i,j),都在输入特征图 A A A 的相应局部窗口中计算所有值的平均值。

cpp 复制代码
//平均池化
Eigen::MatrixXf Pooling::averagePoolingForward(const Eigen::MatrixXf& input,int m_poolSize,int m_stride)
{
    int outputHeight = (input.rows() - m_poolSize) / m_stride + 1;
    int outputWidth = (input.cols() - m_poolSize) / m_stride + 1;

    Eigen::MatrixXf output(outputHeight, outputWidth);

    for (int i = 0; i < outputHeight; ++i)
    {
        for (int j = 0; j < outputWidth; ++j)
        {
            output(i, j) = input.block(i * m_stride, j * m_stride, m_poolSize, m_poolSize).mean();
        }
    }

    return output;
}

// 反向传播对于平均池化比较简单,因为只需要分摊输入梯度到相应的位置。
Eigen::MatrixXf Pooling::averagePoolingBackward(const Eigen::MatrixXf& input,const Eigen::MatrixXf& gradient,int m_poolSize,int m_stride)
{
    Eigen::MatrixXf output = Eigen::MatrixXf::Zero(input.rows(), input.cols());

    int inputHeight = gradient.rows();
    int inputWidth = gradient.cols();

    for (int i = 0; i < inputHeight; ++i)
    {
        for (int j = 0; j < inputWidth; ++j)
        {
            output.block(i * m_stride, j * m_stride, m_poolSize, m_poolSize).array() += gradient(i, j) / (m_poolSize * m_poolSize);
        }
    }

    return output;
}
相关推荐
兰亭妙微31 分钟前
ui设计公司审美积累 | 金融人工智能与用户体验 用户界面仪表盘设计
人工智能·金融·ux
AKAMAI1 小时前
安全风暴的绝地反击 :从告警地狱到智能防护
运维·人工智能·云计算
岁月宁静1 小时前
深度定制:在 Vue 3.5 应用中集成流式 AI 写作助手的实践
前端·vue.js·人工智能
galaxylove1 小时前
Gartner发布数据安全态势管理市场指南:将功能扩展到AI的特定数据安全保护是DSPM发展方向
大数据·人工智能
格林威2 小时前
偏振相机在半导体制造的领域的应用
人工智能·深度学习·数码相机·计算机视觉·视觉检测·制造
晓枫-迷麟3 小时前
【文献阅读】当代MOF与机器学习
人工智能·机器学习
来酱何人3 小时前
实时NLP数据处理:流数据的清洗、特征提取与模型推理适配
人工智能·深度学习·分类·nlp·bert
sensen_kiss3 小时前
INT301 Bio-computation 生物计算(神经网络)Pt.3 梯度下降与Sigmoid激活函数
人工智能·神经网络·机器学习
Shilong Wang3 小时前
MLE, MAP, Full Bayes
人工智能·算法·机器学习
Theodore_10223 小时前
机器学习(6)特征工程与多项式回归
深度学习·算法·机器学习·数据分析·多项式回归