MATLAB环境下使用相关图可视化相关矩阵

为了处理各行各业中出现的高维数据,迫切需要寻找适用的统计学方法。大维随机矩阵理论是处理高维数据的理论工具之一,在高维统计分析中,表现出良好的性能并有着广泛的应用。

二十世纪四十年代和五十年代初期,大维随机矩阵理论起源于量子力学中量子能级分布的研究。二十世纪五十年代末,大维随机矩阵谱特性的研究吸引了数学家和统计学家的关注。开创性的工作是诺贝尔物理学奖获得者Wigner给出了Wigner矩阵特征值经验谱分布的极限分布,即著名的半圆律。针对大维样本协方差矩阵,Mar˘cenko发现了M-P律。自此,更多的学者致力于大维随机矩阵理论的研究。经过半个多世纪的发展,随机矩阵理论已成为地球物理学、数论、组合论和多元统计分析等多个学科的重要工具,同时应用于许多重要领域,如无线通信、计量经济学等。近年来,随机矩阵的研究涉及极值特征值和一些二阶极限定理,如线性谱统计量的中心极限定理等。

在多元统计分析中,协方差矩阵和相关矩阵扮演着非常重要的角色,检验两者的结构具有重要意义,鉴于此,本代码在MATLAB环境下使用相关图可视化相关矩阵,部分代码如下:

复制代码
%% Prepare the data
% Load the example dataset and compute correlation matrix
clc;clear all;close all
D = load('accidents.mat');
C = corr(D.hwydata);
axislabels = D.hwyheaders;

%% Draw the correlogram
% Prepare the figure and set the size
figure(1); clf();
set(gcf, 'Position', [0 0 1080 640]); movegui('center');

%% Nodes as sorted by default, set 'Sorting' false to disable it
figure(2); clf();
set(gcf, 'Position', [0 0 1080 640]); movegui('center');

出图如下:

工学博士,担任《Mechanical System and Signal Processing》审稿专家,担任
《中国电机工程学报》优秀审稿专家,《控制与决策》,《系统工程与电子技术》,《电力系统保护与控制》,《宇航学报》等EI期刊审稿专家。

擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

相关推荐
2201_754918412 分钟前
OpenCV 背景建模详解:从原理到实战
人工智能·opencv·计算机视觉
uyeonashi5 分钟前
【Boost搜索引擎】构建Boost站内搜索引擎实践
开发语言·c++·搜索引擎
CopyLower6 分钟前
苹果计划将AI搜索集成至Safari:谷歌搜索下降引发的市场变革
前端·人工智能·safari
wd2099888 分钟前
2025年Ai写PPT工具推荐,这5款Ai工具可以一键生成专业PPT
人工智能
再睡一夏就好8 分钟前
从硬件角度理解“Linux下一切皆文件“,详解用户级缓冲区
linux·服务器·c语言·开发语言·学习笔记
张飞飞飞飞飞10 分钟前
语音识别——声纹识别
人工智能·语音识别
archko1 小时前
语音识别-3,添加ai问答
android·人工智能
TIF星空1 小时前
【使用 C# 获取 USB 设备信息及进行通信】
开发语言·经验分享·笔记·学习·microsoft·c#
Bowen_CV3 小时前
AI 赋能防艾宣传:从创意到实践,我的 IP 形象设计之旅
人工智能·3d建模·豆包·造好物·腾讯混元 3d
你是一个铁憨憨3 小时前
使用深度学习预训练模型检测物体
人工智能·深度学习·arcgis·影像