MATLAB环境下使用相关图可视化相关矩阵

为了处理各行各业中出现的高维数据,迫切需要寻找适用的统计学方法。大维随机矩阵理论是处理高维数据的理论工具之一,在高维统计分析中,表现出良好的性能并有着广泛的应用。

二十世纪四十年代和五十年代初期,大维随机矩阵理论起源于量子力学中量子能级分布的研究。二十世纪五十年代末,大维随机矩阵谱特性的研究吸引了数学家和统计学家的关注。开创性的工作是诺贝尔物理学奖获得者Wigner给出了Wigner矩阵特征值经验谱分布的极限分布,即著名的半圆律。针对大维样本协方差矩阵,Mar˘cenko发现了M-P律。自此,更多的学者致力于大维随机矩阵理论的研究。经过半个多世纪的发展,随机矩阵理论已成为地球物理学、数论、组合论和多元统计分析等多个学科的重要工具,同时应用于许多重要领域,如无线通信、计量经济学等。近年来,随机矩阵的研究涉及极值特征值和一些二阶极限定理,如线性谱统计量的中心极限定理等。

在多元统计分析中,协方差矩阵和相关矩阵扮演着非常重要的角色,检验两者的结构具有重要意义,鉴于此,本代码在MATLAB环境下使用相关图可视化相关矩阵,部分代码如下:

%% Prepare the data
% Load the example dataset and compute correlation matrix
clc;clear all;close all
D = load('accidents.mat');
C = corr(D.hwydata);
axislabels = D.hwyheaders;

%% Draw the correlogram
% Prepare the figure and set the size
figure(1); clf();
set(gcf, 'Position', [0 0 1080 640]); movegui('center');

%% Nodes as sorted by default, set 'Sorting' false to disable it
figure(2); clf();
set(gcf, 'Position', [0 0 1080 640]); movegui('center');

出图如下:

工学博士,担任《Mechanical System and Signal Processing》审稿专家,担任
《中国电机工程学报》优秀审稿专家,《控制与决策》,《系统工程与电子技术》,《电力系统保护与控制》,《宇航学报》等EI期刊审稿专家。

擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

相关推荐
DashVector几秒前
如何通过HTTP API检索Doc
数据库·人工智能·http·阿里云·数据库开发·向量检索
筑基.1 分钟前
basic_ios及其衍生库(附 GCC libstdc++源代码)
开发语言·c++
说私域4 分钟前
无人零售及开源 AI 智能名片 S2B2C 商城小程序的深度剖析
人工智能·小程序·零售
Calvin88082812 分钟前
Android Studio 的革命性更新:Project Quartz 和 Gemini,开启 AI 开发新时代!
android·人工智能·android studio
雨颜纸伞(hzs)16 分钟前
C语言介绍
c语言·开发语言·软件工程
J总裁的小芒果17 分钟前
THREE.js 入门(六) 纹理、uv坐标
开发语言·javascript·uv
西西弗Sisyphus43 分钟前
基于推理的目标检测 DetGPT
目标检测·计算机视觉
坊钰1 小时前
【Java 数据结构】移除链表元素
java·开发语言·数据结构·学习·链表
chenziang11 小时前
leetcode hot100 LRU缓存
java·开发语言
Jamence1 小时前
【深度学习数学知识】-贝叶斯公式
人工智能·深度学习·概率论