【Pytorch深度学习开发实践学习】【AlexNet】经典算法复现-Pytorch实现AlexNet神经网络(1)model.py

算法简介

AlexNet是人工智能深度学习在CV领域的开山之作,是最先把深度卷积神经网络应用于图像分类领域的研究成果,对后面的诸多研究起到了巨大的引领作用,因此有必要学习这个算法并能够实现它。

主要的创新点在于:

  1. 首次使用GPU进行神经网络加速训练
  2. 使用使用了非饱和的激活函数ReLU,而不是传统的sigmoid和tanh
  3. 使用了数据增强手段抑制过拟合
  4. 提出了Dropout随机失活抑制过拟合
  5. 提出了LRN局部响应归一化
  6. 使用了重叠池化抑制过拟合

model.py代码讲解

python 复制代码
import torch.nn as nn
import torch


class AlexNet(nn.Module):
    def __init__(self, num_classes=1000, init_weights=False):
        super(AlexNet, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 48, kernel_size=11, stride=4, padding=2),  # input[3, 224, 224]  使用48个11*11的卷积核,步长为4,padding为2 output[48, 55, 55]
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),                  # input[48, 55, 55]  output[48, 27, 27]
            nn.Conv2d(48, 128, kernel_size=5, padding=2),           # output[128, 27, 27]
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),                  # output[128, 13, 13]
            nn.Conv2d(128, 192, kernel_size=3, padding=1),          # output[192, 13, 13]
            nn.ReLU(inplace=True),
            nn.Conv2d(192, 192, kernel_size=3, padding=1),          # output[192, 13, 13]
            nn.ReLU(inplace=True),
            nn.Conv2d(192, 128, kernel_size=3, padding=1),          # output[128, 13, 13]
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),                  # output[128, 6, 6]
        )
        self.classifier = nn.Sequential(
            nn.Dropout(p=0.5),
            nn.Linear(128 * 6 * 6, 2048),
            nn.ReLU(inplace=True),
            nn.Dropout(p=0.5),
            nn.Linear(2048, 2048),
            nn.ReLU(inplace=True),
            nn.Linear(2048, num_classes),
        )
    

    def forward(self, x):
        x = self.features(x)
        x = torch.flatten(x, start_dim=1)
        x = self.classifier(x)
        return x

model.py的全部代码如上

现在逐行进行分析

python 复制代码
class AlexNet(nn.Module):
    def __init__(self, num_classes=1000, init_weights=False):
        super(AlexNet, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 48, kernel_size=11, stride=4, padding=2),  # input[3, 224, 224]  使用48个11*11的卷积核,步长为4,padding为2 output[48, 55, 55]
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),                  # input[48, 55, 55]  output[48, 27, 27]
            nn.Conv2d(48, 128, kernel_size=5, padding=2),           # output[128, 27, 27]
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),                  # output[128, 13, 13]
            nn.Conv2d(128, 192, kernel_size=3, padding=1),          # output[192, 13, 13]
            nn.ReLU(inplace=True),
            nn.Conv2d(192, 192, kernel_size=3, padding=1),          # output[192, 13, 13]
            nn.ReLU(inplace=True),
            nn.Conv2d(192, 128, kernel_size=3, padding=1),          # output[128, 13, 13]
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),                  # output[128, 6, 6]
        )

class AlexNet(nn.Module):

定义了一个AlexNet的类,这个类继承了nn.Module

def init (self,num_classes=1000):

定义了类的初始化函数,它有个可选的参数 num_classes是我们这个神经网络在输出的分类数

super(AlexNet,self).__init()

这是为了调用父类的初始化函数

self.features = nn.Sequential()

这里非常重要,我们可以去Pytorch的官方文档上看看,

官方的解释是:

模块将按照传入构造函数的顺序添加到其中。另外,也可以传入一个有序字典的模块。Sequential的forward()方法接受任何输入,并将其转发给它包含的第一个模块。然后,对于每个后续模块,它将输出"链接"到输入,最终返回最后一个模块的输出。

Sequential相对于手动调用一系列模块的优势在于,它允许将整个容器视为单个模块,这样对Sequential执行的转换将应用于其存储的每个模块(它们分别是Sequential的注册子模块)。

Sequential和torch.nn.ModuleList之间有什么区别?ModuleList就像它的名字一样-用于存储Module的列表!另一方面,Sequential中的层以级联方式连接。

论文中的AlexNet网络结构图如下:

AlexNet是第一个网络结构开始变得更加复杂的神经网络模型(Lenet)只有两个卷积层和两个全连接层,而AlexNet有5个卷积层和3个全连接层,对于逐渐复杂的网络结构,我们可以利用Sequential函数搭建序列化的网络模块

比如这里我们首先定义了一个features模块

nn.Conv2d(3, 48, kernel_size=11, stride=4, padding=2),

第一个卷积层 输入是224224 3 48个1111的卷积核 步长是4,填充是2
输出是55
55*48

nn.ReLU(inplace=True),ReLU激活函数

nn.MaxPool2d(kernel_size=3, stride=2),

定义一个最大池化层,使用3x3的池化核,步长为2。这将进一步减少特征图的尺寸。

nn.Conv2d(48, 128, kernel_size=5, padding=2),

又是一个卷积层,输入是2727 48 128个55的卷积核 填充是2,输出是2727*128

然后以此类推

nn.ReLU(inplace=True),

nn.MaxPool2d(kernel_size=3, stride=2), 又是激活函数和池化,池化后输出 1313 128

nn.Conv2d(128, 192, kernel_size=3, padding=1), 输入1313 128 输出1313192

nn.ReLU(inplace=True),

nn.Conv2d(192, 192, kernel_size=3, padding=1),输入1313 192 输出1313192

nn.ReLU(inplace=True),

nn.Conv2d(192, 128, kernel_size=3, padding=1), 输入1313 192

输出1313128

nn.ReLU(inplace=True),

nn.MaxPool2d(kernel_size=3, stride=2), 输入1313 128 输出 66128

python 复制代码
self.classifier = nn.Sequential(
            nn.Dropout(p=0.5),
            nn.Linear(128 * 6 * 6, 2048),
            nn.ReLU(inplace=True),
            nn.Dropout(p=0.5),
            nn.Linear(2048, 2048),
            nn.ReLU(inplace=True),
            nn.Linear(2048, num_classes),
        )

第二个模块,上一个是5层卷积层加3层池化层提取特征

下面这个模块就是全连接层做分类

首先是drouput随机失活抑制过拟合的操作

然后是 nn.Linear(128 * 6 * 6, 2048),1286 6的原因是全连接层是接着前面的最后一个也是第三个池化层,池化层的输出就是1286 6

后面再接两个全连接层,最后一个全连接层的输出就是对1000个类的预测结果

python 复制代码
   def forward(self, x):
        x = self.features(x)
        x = torch.flatten(x, start_dim=1)
        x = self.classifier(x)
        return x

def forward(self, x):

定义一个名为forward的方法,这是PyTorch中自定义神经网络层或模型的标准做法。这个方法描述了输入数据x通过网络的前向传播过程。

x = self.features(x)

将输入数据x传递给feature模块

x = torch.flatten(x, start_dim=1)

使用PyTorch的flatten函数将特征图x在指定的维度(start_dim=1,通常是指从第二个维度开始,即特征图的深度维度)展平。这通常是为了将多维的特征图转换为一维的张量,以便输入到全连接层。

这里要重点说明一下,在feature后输出的x是一个四维的参数(B,C,H,W)分别是batchsize channel 高、宽 而这个函数的意思是从第二维channel开始,对后三维 通道数、宽、高进行展开,转为一维的向量输入全连接层

x = self.classifier(x)

将展平后的特征x传递给classifier

return x

返回经过分类器处理后的输出。

相关推荐
喵~来学编程啦13 分钟前
【论文精读】LPT: Long-tailed prompt tuning for image classification
人工智能·深度学习·机器学习·计算机视觉·论文笔记
阿伟来咯~14 分钟前
记录学习react的一些内容
javascript·学习·react.js
Suckerbin36 分钟前
Hms?: 1渗透测试
学习·安全·网络安全
水豚AI课代表1 小时前
分析报告、调研报告、工作方案等的提示词
大数据·人工智能·学习·chatgpt·aigc
聪明的墨菲特i1 小时前
Python爬虫学习
爬虫·python·学习
Diamond技术流1 小时前
从0开始学习Linux——网络配置
linux·运维·网络·学习·安全·centos
斑布斑布1 小时前
【linux学习2】linux基本命令行操作总结
linux·运维·服务器·学习
Chef_Chen2 小时前
从0开始学习机器学习--Day13--神经网络如何处理复杂非线性函数
神经网络·学习·机器学习
-Nemophilist-2 小时前
机器学习与深度学习-1-线性回归从零开始实现
深度学习·机器学习·线性回归
lulu_gh_yu2 小时前
数据结构之排序补充
c语言·开发语言·数据结构·c++·学习·算法·排序算法