MATLAB环境下基于稀疏最大谐波噪声比反卷积的信号处理方法

状态监测与故障诊断是保障机械设备安全、稳定运行的基础。滚动轴承是旋转机械的核心部件,其服役性能直接影响整台设备的运行安全。在测试的振动信号中,周期性冲击是滚动轴承发生故障的重要标志。因此,如何从振动信号中提取出与故障相关的周期性冲击成分,是实现轴承故障诊断的关键。然而,随着机械设备集成化程度越来越高和运行工况日益复杂化,测试的振动信号的组成成分愈发复杂,噪声和干扰信息带来的影响也日趋严重,使得轴承故障特征更加微弱,特征提取变得十分困难。

谐波噪声比,被定义为信号中谐波成分与噪声成分能量的比值。对于数据序列x,其谐噪比定义为:

为了测试HNR对周期性故障特征的评价性能,计算了严格等间隔分布的周期性冲击信号以及设置0%~20%的随机波动对应信号的HNR值,结果如图2所示。

原始严格周期的信号,其HNR数值为11.58,随着随机波动的增大,信号的周期性逐渐降低,对应的HNR数值也随之下降。由此说明,HNR能够有效、定量地评价故障信号的周期性特征。

鉴于谐波噪声比的优势,提出一种基于稀疏最大谐波噪声比反卷积的信号处理方法,算法程序运行环境为MATLAB R2018a,可用于旋转设备故障诊断,也可用于金融时间序列,地震信号,机械振动信号,语音信号,声信号等一维信号分析。

复制代码
% 最优滤波频带滤波后的时域波形
figure
plot(t,hilx);
ylabel('Amplitude');
xlabel('Time [s]');
set(gcf,'pos',pos);
% 最优滤波频带滤波后的包络谱
figure
myfft(fs,hilx,1);
ylabel('Amplitude');
xlabel('Frequency [Hz]');
set(gcf,'pos',pos);
xlim([0 300])

出图如下:

工学博士,担任《Mechanical System and Signal Processing》审稿专家,担任
《中国电机工程学报》优秀审稿专家,《控制与决策》,《系统工程与电子技术》,《电力系统保护与控制》,《宇航学报》等EI期刊审稿专家。

擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

相关推荐
-dzk-2 分钟前
【3DGS复现】Autodl服务器复现3DGS《简单快速》《一次成功》《新手练习复现必备》
运维·服务器·python·计算机视觉·3d·三维重建·三维
七芒星202339 分钟前
多目标识别YOLO :YOLOV3 原理
图像处理·人工智能·yolo·计算机视觉·目标跟踪·分类·聚类
楼田莉子1 小时前
Qt开发学习——QtCreator深度介绍/程序运行/开发规范/对象树
开发语言·前端·c++·qt·学习
byzy1 小时前
【论文笔记】VisionPAD: A Vision-Centric Pre-training Paradigm for Autonomous Driving
论文阅读·深度学习·计算机视觉·自动驾驶
韩立学长2 小时前
【开题答辩实录分享】以《基于python的奶茶店分布数据分析与可视化》为例进行答辩实录分享
开发语言·python·数据分析
天若有情6732 小时前
C++空值初始化利器:empty.h使用指南
开发语言·c++
远远远远子2 小时前
类与对象 --1
开发语言·c++·算法
无敌最俊朗@2 小时前
C/C++ 关键关键字面试指南 (const, static, volatile, explicit)
c语言·开发语言·c++·面试
2401_831501732 小时前
Python学习之day03学习(文件和异常)
开发语言·python·学习
酷~2 小时前
C语言模拟面向对象编程方法之多态
c语言·开发语言