MATLAB环境下基于稀疏最大谐波噪声比反卷积的信号处理方法

状态监测与故障诊断是保障机械设备安全、稳定运行的基础。滚动轴承是旋转机械的核心部件,其服役性能直接影响整台设备的运行安全。在测试的振动信号中,周期性冲击是滚动轴承发生故障的重要标志。因此,如何从振动信号中提取出与故障相关的周期性冲击成分,是实现轴承故障诊断的关键。然而,随着机械设备集成化程度越来越高和运行工况日益复杂化,测试的振动信号的组成成分愈发复杂,噪声和干扰信息带来的影响也日趋严重,使得轴承故障特征更加微弱,特征提取变得十分困难。

谐波噪声比,被定义为信号中谐波成分与噪声成分能量的比值。对于数据序列x,其谐噪比定义为:

为了测试HNR对周期性故障特征的评价性能,计算了严格等间隔分布的周期性冲击信号以及设置0%~20%的随机波动对应信号的HNR值,结果如图2所示。

原始严格周期的信号,其HNR数值为11.58,随着随机波动的增大,信号的周期性逐渐降低,对应的HNR数值也随之下降。由此说明,HNR能够有效、定量地评价故障信号的周期性特征。

鉴于谐波噪声比的优势,提出一种基于稀疏最大谐波噪声比反卷积的信号处理方法,算法程序运行环境为MATLAB R2018a,可用于旋转设备故障诊断,也可用于金融时间序列,地震信号,机械振动信号,语音信号,声信号等一维信号分析。

复制代码
% 最优滤波频带滤波后的时域波形
figure
plot(t,hilx);
ylabel('Amplitude');
xlabel('Time [s]');
set(gcf,'pos',pos);
% 最优滤波频带滤波后的包络谱
figure
myfft(fs,hilx,1);
ylabel('Amplitude');
xlabel('Frequency [Hz]');
set(gcf,'pos',pos);
xlim([0 300])

出图如下:

工学博士,担任《Mechanical System and Signal Processing》审稿专家,担任
《中国电机工程学报》优秀审稿专家,《控制与决策》,《系统工程与电子技术》,《电力系统保护与控制》,《宇航学报》等EI期刊审稿专家。

擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

相关推荐
DES 仿真实践家3 分钟前
【Day 11-N22】Python类(3)——Python的继承性、多继承、方法重写
开发语言·笔记·python
Code Warrior1 小时前
【每日算法】专题五_位运算
开发语言·c++
沐知全栈开发3 小时前
HTML DOM 访问
开发语言
顾道长生'3 小时前
(Arxiv-2025)通过动态 token 剔除实现无需训练的高效视频生成
计算机视觉·音视频·视频生成
脑袋大大的4 小时前
JavaScript 性能优化实战:减少 DOM 操作引发的重排与重绘
开发语言·javascript·性能优化
二进制person5 小时前
Java SE--方法的使用
java·开发语言·算法
OneQ6666 小时前
C++讲解---创建日期类
开发语言·c++·算法
刘小小_算法工程师6 小时前
「ECG信号处理——(20)基于心电和呼吸的因果分析模型」2025年7月2日
信号处理
码农不惑6 小时前
2025.06.27-14.44 C语言开发:Onvif(二)
c语言·开发语言
shangyingying_17 小时前
关于小波降噪、小波增强、小波去雾的原理区分
人工智能·深度学习·计算机视觉