05 OpenCV图像混合技术

文章目录

理论

其中 的取值范围为0~1之间

算子

addWeighted

c 复制代码
CV_EXPORTS_W void addWeighted(
    InputArray src1, 
    double alpha, 
    InputArray src2,                     
    double beta,
    double gamma, 
    OutputArray dst, 
    int dtype = -1
);
参数1:输入图像Mat -- src1
参数2:输入图像src1的alpha值
参数3:输入图像Mat -- src2
参数4:输入图像src2的alpha值
参数5:gamma值,添加到每个和的标量。
参数6:输出混合图像

add

c 复制代码
void add(InputArray src1, 
        InputArray src2, 
        OutputArray dst,
        InputArray mask = noArray(), 
        int dtype = -1
);
InputArray类型的src1 ,第一个输入数组或scalar。

InputArray类型的src2 ,第二个输入数组或scalar。

OutputArray类型的dst ,输出图像,图像的尺寸、通道数和输入图像相同。

InputArray类型的mask,可选操作掩码-8位单通道数组,指定要更改的输出数组元素。

int类型的dtype,输出数组的可选深度。

subtract

c 复制代码
void subtract(InputArray src1, 
        InputArray src2, 
        OutputArray dst,
        InputArray mask = noArray(), 
        int dtype = -1
);
InputArray类型的src1 ,第一个输入数组或scalar。

InputArray类型的src2 ,第二个输入数组或scalar。

OutputArray类型的dst ,输出图像,图像的尺寸、通道数和输入图像相同。

InputArray类型的mask,可选操作掩码-8位单通道数组,指定要更改的输出数组元素。

int类型的dtype,输出数组的可选深度。

multiply

c 复制代码
void multiply(InputArray src1, 
        InputArray src2, 
        OutputArray dst,
        double scale = 1,
        int dtype = -1
);
InputArray类型的src1 ,第一个输入数组或scalar。

InputArray类型的src2 ,第二个输入数组或scalar,尺寸和类型要与src1一致。

OutputArray类型的dst ,输出图像,尺寸和类型要与src1一致。
double类型的scale,可选比例因子。
int类型的dtype,输出数组的可选深度。

divide

c 复制代码
void divide(InputArray src1, 
        InputArray src2, 
        OutputArray dst,
        double scale = 1,
        int dtype = -1
);
 
void divide(double scale, 
        InputArray src2,                         
        OutputArray dst, 
        int dtype = -1
);

InputArray类型的src1 ,第一个输入数组或scalar。
InputArray类型的src2 ,第二个输入数组或scalar,尺寸和类型要与src1一致。
OutputArray类型的dst ,输出图像,尺寸和类型要与src1一致。
double类型的scale,scalar因子。
int类型的dtype,输出数组的可选深度。

示例

c 复制代码
#include <opencv2/opencv.hpp>
#include <iostream>

using namespace std;
using namespace cv;

int main(int argc, char** argv) {
	Mat src1, src2, dst;
	src1 = imread("D:/vcprojects/images/LinuxLogo.jpg");
	src2 = imread("D:/vcprojects/images/win7logo.jpg");
	if (!src1.data) {
		cout << "could not load image Linux Logo..." << endl;
		return -1;
	}
	if (!src2.data) {
		cout << "could not load image WIN7 Logo..." << endl;
		return -1;
	}

	double alpha = 0.5;
	if (src1.rows == src2.rows && src1.cols == src2.cols && src1.type() == src2.type()) {
		addWeighted(src1, alpha, src2, (1.0 - alpha), 0.0, dst);
		// multiply(src1, src2, dst, 1.0);//两个图片相乘
		
		imshow("linuxlogo", src1);
		imshow("win7logo", src2);
		namedWindow("blend demo", CV_WINDOW_AUTOSIZE);
		imshow("blend demo", dst);
	}
	else {
		printf("could not blend images , the size of images is not same...\n");
		return -1;
	}

	waitKey(0);
	return 0;
}
相关推荐
橙色小博2 分钟前
GPT:Transformer的专精产品
人工智能·python·gpt·深度学习·神经网络·transformer
pythonSuperman18 分钟前
Correlation Matrix of Model Logits
人工智能·深度学习·机器学习
小华同学ai21 分钟前
7.9K star!免费解锁Cursor Pro功能,这个开源神器太强了!
人工智能·开源·github
AndrewHZ21 分钟前
【图像处理基石】什么是影调?并用python实现一个哈苏色彩影调
图像处理·人工智能·python·计算机视觉·影调·摄影语言
InTheMirror24 分钟前
Google 最新发布!A2A 与 MCP:引领智能体互联的协议之争?
人工智能
AI服务老曹34 分钟前
包含网络、平台、数据及安全四大体系的智慧快消开源了
运维·人工智能·安全·开源·音视频
神经星星34 分钟前
在线教程丨字节开源 InfiniteYou 图像生成框架,实现高保真面部特征迁移
人工智能·深度学习·机器学习
ayiya_Oese36 分钟前
[环境配置] 2. 依赖库安装
人工智能·python·深度学习·神经网络·目标检测·机器学习·计算机视觉
扫地僧00943 分钟前
大模型在网络安全领域的七大应用
人工智能·安全·web安全·自动化·大模型·deepseek·微调参数
山花1 小时前
最浅显易懂的自注意力机制讲解,杜绝QKV
人工智能·llm