05 OpenCV图像混合技术

文章目录

理论

其中 的取值范围为0~1之间

算子

addWeighted

c 复制代码
CV_EXPORTS_W void addWeighted(
    InputArray src1, 
    double alpha, 
    InputArray src2,                     
    double beta,
    double gamma, 
    OutputArray dst, 
    int dtype = -1
);
参数1:输入图像Mat -- src1
参数2:输入图像src1的alpha值
参数3:输入图像Mat -- src2
参数4:输入图像src2的alpha值
参数5:gamma值,添加到每个和的标量。
参数6:输出混合图像

add

c 复制代码
void add(InputArray src1, 
        InputArray src2, 
        OutputArray dst,
        InputArray mask = noArray(), 
        int dtype = -1
);
InputArray类型的src1 ,第一个输入数组或scalar。

InputArray类型的src2 ,第二个输入数组或scalar。

OutputArray类型的dst ,输出图像,图像的尺寸、通道数和输入图像相同。

InputArray类型的mask,可选操作掩码-8位单通道数组,指定要更改的输出数组元素。

int类型的dtype,输出数组的可选深度。

subtract

c 复制代码
void subtract(InputArray src1, 
        InputArray src2, 
        OutputArray dst,
        InputArray mask = noArray(), 
        int dtype = -1
);
InputArray类型的src1 ,第一个输入数组或scalar。

InputArray类型的src2 ,第二个输入数组或scalar。

OutputArray类型的dst ,输出图像,图像的尺寸、通道数和输入图像相同。

InputArray类型的mask,可选操作掩码-8位单通道数组,指定要更改的输出数组元素。

int类型的dtype,输出数组的可选深度。

multiply

c 复制代码
void multiply(InputArray src1, 
        InputArray src2, 
        OutputArray dst,
        double scale = 1,
        int dtype = -1
);
InputArray类型的src1 ,第一个输入数组或scalar。

InputArray类型的src2 ,第二个输入数组或scalar,尺寸和类型要与src1一致。

OutputArray类型的dst ,输出图像,尺寸和类型要与src1一致。
double类型的scale,可选比例因子。
int类型的dtype,输出数组的可选深度。

divide

c 复制代码
void divide(InputArray src1, 
        InputArray src2, 
        OutputArray dst,
        double scale = 1,
        int dtype = -1
);
 
void divide(double scale, 
        InputArray src2,                         
        OutputArray dst, 
        int dtype = -1
);

InputArray类型的src1 ,第一个输入数组或scalar。
InputArray类型的src2 ,第二个输入数组或scalar,尺寸和类型要与src1一致。
OutputArray类型的dst ,输出图像,尺寸和类型要与src1一致。
double类型的scale,scalar因子。
int类型的dtype,输出数组的可选深度。

示例

c 复制代码
#include <opencv2/opencv.hpp>
#include <iostream>

using namespace std;
using namespace cv;

int main(int argc, char** argv) {
	Mat src1, src2, dst;
	src1 = imread("D:/vcprojects/images/LinuxLogo.jpg");
	src2 = imread("D:/vcprojects/images/win7logo.jpg");
	if (!src1.data) {
		cout << "could not load image Linux Logo..." << endl;
		return -1;
	}
	if (!src2.data) {
		cout << "could not load image WIN7 Logo..." << endl;
		return -1;
	}

	double alpha = 0.5;
	if (src1.rows == src2.rows && src1.cols == src2.cols && src1.type() == src2.type()) {
		addWeighted(src1, alpha, src2, (1.0 - alpha), 0.0, dst);
		// multiply(src1, src2, dst, 1.0);//两个图片相乘
		
		imshow("linuxlogo", src1);
		imshow("win7logo", src2);
		namedWindow("blend demo", CV_WINDOW_AUTOSIZE);
		imshow("blend demo", dst);
	}
	else {
		printf("could not blend images , the size of images is not same...\n");
		return -1;
	}

	waitKey(0);
	return 0;
}
相关推荐
lisw054 小时前
6G频段与5G频段有何不同?
人工智能·机器学习
2501_941623326 小时前
人工智能赋能智慧农业互联网应用:智能种植、农业数据分析与产量优化实践探索》
大数据·人工智能
不爱吃糖的程序媛6 小时前
华为 CANN:昇腾 AI 的异构计算架构核心与开源生态解析
人工智能·华为·架构
AKAMAI7 小时前
从客户端自适应码率流媒体迁移到服务端自适应码率流媒体
人工智能·云计算
jinxinyuuuus7 小时前
GTA 风格 AI 生成器:跨IP融合中的“视觉语义冲突”与风格适配损失
人工智能·网络协议
如何原谅奋力过但无声7 小时前
TensorFlow 1.x常用函数总结(持续更新)
人工智能·python·tensorflow
翔云 OCR API7 小时前
人脸识别API开发者对接代码示例
开发语言·人工智能·python·计算机视觉·ocr
咚咚王者7 小时前
人工智能之数据分析 numpy:第十三章 工具衔接与迁移
人工智能·数据分析·numpy
咚咚王者7 小时前
人工智能之数据分析 numpy:第九章 数组运算(二)
人工智能·数据分析·numpy
YangYang9YangYan7 小时前
网络安全专业职业能力认证发展路径指南
大数据·人工智能·安全·web安全