吴恩达机器学习笔记:第5周-9 神经网络的学习(Neural Networks: Learning)

目录

  • [9.1 代价函数](#9.1 代价函数)

9.1 代价函数

首先引入一些便于稍后讨论的新标记方法:

假设神经网络的训练样本有𝑚个,每个包含一组输入𝑥和一组输出信号𝑦,𝐿表示神经网络层数,𝑆𝐼表示每层的 neuron 个数(𝑆𝑙表示输出层神经元个数),𝑆𝐿代表最后一层中处理单元的个数。

将神经网络的分类定义为两种情况:二类分类和多类分类,

二类分类:𝑆𝐿 = 0, 𝑦 = 0 𝑜𝑟 1 表示哪一类;

𝐾类分类:𝑆𝐿 = 𝑘, 𝑦𝑖 = 1表示分到第 i 类;(𝑘 > 2)

我们回顾逻辑回归问题中我们的代价函数为:

J ( θ ) = − 1 m [ ∑ j = 1 n y ( i ) l o g h θ ( x ( i ) ) + ( 1 − y ( i ) ) l o g ( 1 − h θ ( x ( i ) ) ) ] + λ 2 m ∑ j = 1 n θ j 2 J(θ) = -\frac{1}{m}[ \sum_{j=1}^n {y^{(i)}logh_θ (x^{(i)}) + (1-y^{(i)})log(1-h_θ (x^{(i)}))}] +\frac{λ}{2m}\sum_{j=1}^n {θ_j^{2}} J(θ)=−m1[j=1∑ny(i)loghθ(x(i))+(1−y(i))log(1−hθ(x(i)))]+2mλj=1∑nθj2

在逻辑回归中,我们只有一个输出变量,又称标量(scalar),也只有一个因变量𝑦,但是在神经网络中,我们可以有很多输出变量,我们的ℎ𝜃(𝑥)是一个维度为𝐾的向量,并且我们训练集中的因变量也是同样维度的一个向量,因此我们的代价函数会比逻辑回归更加复杂一些,为:
h θ ( x ) ∈ R k , ( h θ ( x ) ) i = i t h o u t p u t h_θ(x)∈ℝ^k,(h_θ(x))_i =i^{th}output hθ(x)∈Rk,(hθ(x))i=ithoutput

这个看起来复杂很多的代价函数背后的思想还是一样的,我们希望通过代价函数来观察算法预测的结果与真实情况的误差有多大,唯一不同的是,对于每一行特征,我们都会给出𝐾个预测,基本上我们可以利用循环,对每一行特征都预测𝐾个不同结果,然后在利用循环在𝐾个预测中选择可能性最高的一个,将其与𝑦中的实际数据进行比较。

正则化的那一项只是排除了每一层 θ 0 θ_0 θ0后,每一层的𝜃 矩阵的和。最里层的循环𝑗循环所有的行(由𝑠𝑙 +1 层的激活单元数决定),循环𝑖则循环所有的列,由该层(𝑠𝑙层)的激活单元数所决定。即:ℎ𝜃(𝑥)与真实值之间的距离为每个样本-每个类输出的加和,对参数进行regularization 的 bias 项处理所有参数的平方和。

相关推荐
夏天是冰红茶2 小时前
DINO原理详解
人工智能·深度学习·机器学习
做cv的小昊7 小时前
【TJU】信息检索与分析课程笔记和练习(1)认识文献
经验分享·笔记·学习·搜索引擎·全文检索
weixin_409383127 小时前
在kaggle训练Qwen/Qwen2.5-1.5B-Instruct 通过中二时期qq空间记录作为训练数据 训练出中二的模型为目标 第一次训练 好像太二了
人工智能·深度学习·机器学习·qwen
长桥夜波7 小时前
【第二十四周】文献阅读-第一人称下的手势识别(1)
机器学习
图像生成小菜鸟7 小时前
Score Based diffusion model 数学推导
算法·机器学习·概率论
读创商闻7 小时前
崇明岛西滩湿地:离都市最近的候鸟观测笔记
笔记
蒙奇D索大8 小时前
【11408学习记录】考研英语长难句拆解三步法:三步拆解2020年真题,攻克阅读难点
笔记·学习·考研·改行学it
悠闲漫步者8 小时前
第2章 MCS-51单片机的串口和最小系统(学习笔记)
笔记·学习·51单片机
莫白媛8 小时前
Linux创作笔记综合汇总篇
linux·运维·笔记
Wpa.wk8 小时前
Tomcat的安装与部署使用 - 说明版
java·开发语言·经验分享·笔记·tomcat