HIVE中的常用和不常用的函数总结及hive中的常见问题(自用)

笛卡尔积

假设A和B是两个集合,存在一个集合,它的元素是用A中元素为第一元素,B中元素为第二元素构成的有序二元组,这个集合称为集合A和集合B的笛卡尔积,记为A X B。

eg:假设集合A={a, b},集合B={0, 1, 2},则两个集合的笛卡尔积为{(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2)}。

可以用内连接的方式进行笛卡尔积的实现

explode函数

explode函数就是把整个数组的元素进行分解,分解成一个新表(虚拟的),就是把一行好多好多字放到好几行里面去,成一个新的表

特别注意,explode函数只能查询一个字段,多字段查询就会报错。

lateral view 完美的解决了此问题,加上lateral view后就可以多个字段一起查询了

having 和where 的区别

HAVING 关键字和 WHERE 关键字都可以用来过滤数据,且 HAVING 支持 WHERE 关键字中所有的操作符和语法。

但是 WHERE 和 HAVING 关键字也存在以下几点差异:

1.一般情况下,WHERE 用于过滤数据行,而 HAVING 用于过滤分组。

2.WHERE 查询条件中不可以使用聚合函数,而 HAVING 查询条件中可以使用聚合函数。

3.WHERE 在数据分组前进行过滤,而 HAVING 在数据分组后进行过滤 。

4.WHERE 针对数据库文件进行过滤,而 HAVING 针对查询结果进行过滤。也就是说,WHERE 根据数据表中的字段直接进行过滤,而 HAVING 是根据前面已经查询出的字段进行过滤。

5.WHERE 查询条件中不可以使用字段别名,而 HAVING 查询条件中可以使用字段别名。

相关推荐
大鳥4 小时前
数据仓库知识体系
hive·hadoop
计算机毕业编程指导师5 小时前
大数据可视化毕设:Hadoop+Spark交通分析系统从零到上线 毕业设计 选题推荐 毕设选题 数据分析 机器学习 数据挖掘
大数据·hadoop·python·计算机·spark·毕业设计·城市交通
计算机毕业编程指导师5 小时前
【计算机毕设选题】基于Spark的车辆排放分析:2026年热门大数据项目 毕业设计 选题推荐 毕设选题 数据分析 机器学习 数据挖掘
大数据·hadoop·python·计算机·spark·毕业设计·车辆排放
talle20215 小时前
Hive | 行列转换
数据仓库·hive·hadoop
Gain_chance8 小时前
27-学习笔记尚硅谷数仓搭建-数据仓库DWD层介绍及其事务表(行为)相关概念
大数据·数据仓库·笔记·学习
talle20218 小时前
Hive | json数据处理
hive·hadoop·json
CTO Plus技术服务中8 小时前
Hive开发与运维教程
数据仓库·hive·hadoop
Gain_chance8 小时前
28-学习笔记尚硅谷数仓搭建-DWD层交易域加购事务事实表建表语句及详细分析
数据仓库·hive·笔记·学习·datagrip
小邓睡不饱耶9 小时前
Hive 实战:数据仓库建模、SQL 进阶与企业级案例
数据仓库·hive·sql
ha_lydms9 小时前
Hadoop 架构
大数据·hadoop·hdfs·架构·mapreduce·yarn·数据处理