HIVE中的常用和不常用的函数总结及hive中的常见问题(自用)

笛卡尔积

假设A和B是两个集合,存在一个集合,它的元素是用A中元素为第一元素,B中元素为第二元素构成的有序二元组,这个集合称为集合A和集合B的笛卡尔积,记为A X B。

eg:假设集合A={a, b},集合B={0, 1, 2},则两个集合的笛卡尔积为{(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2)}。

可以用内连接的方式进行笛卡尔积的实现

explode函数

explode函数就是把整个数组的元素进行分解,分解成一个新表(虚拟的),就是把一行好多好多字放到好几行里面去,成一个新的表

特别注意,explode函数只能查询一个字段,多字段查询就会报错。

lateral view 完美的解决了此问题,加上lateral view后就可以多个字段一起查询了

having 和where 的区别

HAVING 关键字和 WHERE 关键字都可以用来过滤数据,且 HAVING 支持 WHERE 关键字中所有的操作符和语法。

但是 WHERE 和 HAVING 关键字也存在以下几点差异:

1.一般情况下,WHERE 用于过滤数据行,而 HAVING 用于过滤分组。

2.WHERE 查询条件中不可以使用聚合函数,而 HAVING 查询条件中可以使用聚合函数。

3.WHERE 在数据分组前进行过滤,而 HAVING 在数据分组后进行过滤 。

4.WHERE 针对数据库文件进行过滤,而 HAVING 针对查询结果进行过滤。也就是说,WHERE 根据数据表中的字段直接进行过滤,而 HAVING 是根据前面已经查询出的字段进行过滤。

5.WHERE 查询条件中不可以使用字段别名,而 HAVING 查询条件中可以使用字段别名。

相关推荐
liupenglove6 小时前
自动驾驶数据仓库:时间片合并算法。
大数据·数据仓库·算法·elasticsearch·自动驾驶
吃手机用谁付的款19 小时前
基于hadoop的竞赛网站日志数据分析与可视化(下)
大数据·hadoop·python·信息可视化·数据分析
码字的字节1 天前
深入解析Hadoop RPC:技术细节与推广应用
hadoop·rpc
码字的字节1 天前
深入解析Hadoop架构设计:原理、组件与应用
大数据·hadoop·分布式·hadoop架构设计
LucianaiB2 天前
AI 时代的分布式多模态数据处理实践:我的 ODPS 实践之旅、思考与展望
大数据·数据仓库·人工智能·分布式·odps
༺水墨石༻2 天前
低版本hive(1.2.1)UDF实现清除历史分区数据
数据仓库·hive·hadoop
Leo.yuan3 天前
数据清洗(ETL/ELT)原理与工具选择指南:企业数字化转型的核心引擎
大数据·数据仓库·数据挖掘·数据分析·etl
isNotNullX3 天前
实时数仓和离线数仓还分不清楚?看完就懂了
大数据·数据库·数据仓库·人工智能·数据分析
熊猫钓鱼>_>3 天前
Hadoop 用户入门指南:驾驭大数据的力量
大数据·hadoop·分布式
William一直在路上3 天前
SpringBoot 拦截器和过滤器的区别
hive·spring boot·后端