HIVE中的常用和不常用的函数总结及hive中的常见问题(自用)

笛卡尔积

假设A和B是两个集合,存在一个集合,它的元素是用A中元素为第一元素,B中元素为第二元素构成的有序二元组,这个集合称为集合A和集合B的笛卡尔积,记为A X B。

eg:假设集合A={a, b},集合B={0, 1, 2},则两个集合的笛卡尔积为{(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2)}。

可以用内连接的方式进行笛卡尔积的实现

explode函数

explode函数就是把整个数组的元素进行分解,分解成一个新表(虚拟的),就是把一行好多好多字放到好几行里面去,成一个新的表

特别注意,explode函数只能查询一个字段,多字段查询就会报错。

lateral view 完美的解决了此问题,加上lateral view后就可以多个字段一起查询了

having 和where 的区别

HAVING 关键字和 WHERE 关键字都可以用来过滤数据,且 HAVING 支持 WHERE 关键字中所有的操作符和语法。

但是 WHERE 和 HAVING 关键字也存在以下几点差异:

1.一般情况下,WHERE 用于过滤数据行,而 HAVING 用于过滤分组。

2.WHERE 查询条件中不可以使用聚合函数,而 HAVING 查询条件中可以使用聚合函数。

3.WHERE 在数据分组前进行过滤,而 HAVING 在数据分组后进行过滤 。

4.WHERE 针对数据库文件进行过滤,而 HAVING 针对查询结果进行过滤。也就是说,WHERE 根据数据表中的字段直接进行过滤,而 HAVING 是根据前面已经查询出的字段进行过滤。

5.WHERE 查询条件中不可以使用字段别名,而 HAVING 查询条件中可以使用字段别名。

相关推荐
程序员小羊!2 小时前
数据仓库&OLTP&OLAP&维度讲解
数据仓库
最初的↘那颗心2 小时前
Flink Stream API - 源码开发需求描述
java·大数据·hadoop·flink·实时计算
Lx3523 小时前
MapReduce作业调试技巧:从本地测试到集群运行
大数据·hadoop
BYSJMG4 小时前
计算机大数据毕业设计推荐:基于Spark的气候疾病传播可视化分析系统【Hadoop、python、spark】
大数据·hadoop·python·信息可视化·spark·django·课程设计
励志成为糕手4 小时前
大数据MapReduce架构:分布式计算的经典范式
大数据·hadoop·mapreduce·分布式计算·批处理
RestCloud7 小时前
ETLCloud中的数据转化规则是什么意思?怎么执行
数据库·数据仓库·etl
老刘聊集成7 小时前
数据一致性校验:ETL保证信息准确无误的关键步骤
数据仓库·etl
计算机毕设-小月哥10 小时前
大数据毕业设计选题推荐:基于Hadoop+Spark的城镇居民食品消费分析系统源码
大数据·hadoop·课程设计
Viking_bird18 小时前
centos 7.5 + Hadoop 3.2.4 集群搭建
linux·运维·服务器·hadoop·centos
喂完待续18 小时前
【Tech Arch】Spark为何成为大数据引擎之王
大数据·hadoop·python·数据分析·spark·apache·mapreduce