HIVE中的常用和不常用的函数总结及hive中的常见问题(自用)

笛卡尔积

假设A和B是两个集合,存在一个集合,它的元素是用A中元素为第一元素,B中元素为第二元素构成的有序二元组,这个集合称为集合A和集合B的笛卡尔积,记为A X B。

eg:假设集合A={a, b},集合B={0, 1, 2},则两个集合的笛卡尔积为{(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2)}。

可以用内连接的方式进行笛卡尔积的实现

explode函数

explode函数就是把整个数组的元素进行分解,分解成一个新表(虚拟的),就是把一行好多好多字放到好几行里面去,成一个新的表

特别注意,explode函数只能查询一个字段,多字段查询就会报错。

lateral view 完美的解决了此问题,加上lateral view后就可以多个字段一起查询了

having 和where 的区别

HAVING 关键字和 WHERE 关键字都可以用来过滤数据,且 HAVING 支持 WHERE 关键字中所有的操作符和语法。

但是 WHERE 和 HAVING 关键字也存在以下几点差异:

1.一般情况下,WHERE 用于过滤数据行,而 HAVING 用于过滤分组。

2.WHERE 查询条件中不可以使用聚合函数,而 HAVING 查询条件中可以使用聚合函数。

3.WHERE 在数据分组前进行过滤,而 HAVING 在数据分组后进行过滤 。

4.WHERE 针对数据库文件进行过滤,而 HAVING 针对查询结果进行过滤。也就是说,WHERE 根据数据表中的字段直接进行过滤,而 HAVING 是根据前面已经查询出的字段进行过滤。

5.WHERE 查询条件中不可以使用字段别名,而 HAVING 查询条件中可以使用字段别名。

相关推荐
IT毕设梦工厂6 小时前
大数据毕业设计选题推荐-基于大数据的客户购物订单数据分析与可视化系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·数据分析·spark·毕业设计·源码·bigdata
大数据CLUB14 小时前
基于spark的澳洲光伏发电站选址预测
大数据·hadoop·分布式·数据分析·spark·数据开发
计算机编程小央姐15 小时前
跟上大数据时代步伐:食物营养数据可视化分析系统技术前沿解析
大数据·hadoop·信息可视化·spark·django·课程设计·食物
IT学长编程20 小时前
计算机毕业设计 基于Hadoop的健康饮食推荐系统的设计与实现 Java 大数据毕业设计 Hadoop毕业设计选题【附源码+文档报告+安装调试】
java·大数据·hadoop·毕业设计·课程设计·推荐算法·毕业论文
Lx3521 天前
Hadoop数据一致性保障:处理分布式系统常见问题
大数据·hadoop
IT学长编程1 天前
计算机毕业设计 基于Hadoop豆瓣电影数据可视化分析设计与实现 Python 大数据毕业设计 Hadoop毕业设计选题【附源码+文档报告+安装调试
大数据·hadoop·python·django·毕业设计·毕业论文·豆瓣电影数据可视化分析
Dobby_051 天前
【Hadoop】Yarn:Hadoop 生态的资源操作系统
大数据·hadoop·分布式·yarn
笨蛋少年派1 天前
安装Hadoop中遇到的一些问题和解决
大数据·hadoop·分布式
梓仁沐白1 天前
hadoop单机伪分布环境配置
大数据·hadoop·分布式