HIVE中的常用和不常用的函数总结及hive中的常见问题(自用)

笛卡尔积

假设A和B是两个集合,存在一个集合,它的元素是用A中元素为第一元素,B中元素为第二元素构成的有序二元组,这个集合称为集合A和集合B的笛卡尔积,记为A X B。

eg:假设集合A={a, b},集合B={0, 1, 2},则两个集合的笛卡尔积为{(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2)}。

可以用内连接的方式进行笛卡尔积的实现

explode函数

explode函数就是把整个数组的元素进行分解,分解成一个新表(虚拟的),就是把一行好多好多字放到好几行里面去,成一个新的表

特别注意,explode函数只能查询一个字段,多字段查询就会报错。

lateral view 完美的解决了此问题,加上lateral view后就可以多个字段一起查询了

having 和where 的区别

HAVING 关键字和 WHERE 关键字都可以用来过滤数据,且 HAVING 支持 WHERE 关键字中所有的操作符和语法。

但是 WHERE 和 HAVING 关键字也存在以下几点差异:

1.一般情况下,WHERE 用于过滤数据行,而 HAVING 用于过滤分组。

2.WHERE 查询条件中不可以使用聚合函数,而 HAVING 查询条件中可以使用聚合函数。

3.WHERE 在数据分组前进行过滤,而 HAVING 在数据分组后进行过滤 。

4.WHERE 针对数据库文件进行过滤,而 HAVING 针对查询结果进行过滤。也就是说,WHERE 根据数据表中的字段直接进行过滤,而 HAVING 是根据前面已经查询出的字段进行过滤。

5.WHERE 查询条件中不可以使用字段别名,而 HAVING 查询条件中可以使用字段别名。

相关推荐
kakwooi1 小时前
Hadoop---MapReduce(3)
大数据·hadoop·mapreduce
windy1a1 小时前
【c知道】Hadoop工作原理。
hadoop
油头少年_w7 小时前
大数据导论及分布式存储HadoopHDFS入门
大数据·hadoop·hdfs
工业互联网专业9 小时前
Python毕业设计选题:基于Hadoop的租房数据分析系统的设计与实现
vue.js·hadoop·python·flask·毕业设计·源码·课程设计
bigdata-余建新17 小时前
HDFS和HBase跨集群数据迁移 源码
hadoop·hdfs·hbase
Mephisto.java18 小时前
【大数据学习 | kafka高级部分】文件清除原理
大数据·hadoop·zookeeper·spark·kafka·hbase·flume
m0_3755997318 小时前
Hadoop:单节点配置YARN
hadoop·yarn
大数据魔法师21 小时前
Hadoop生态圈框架部署(五)- Zookeeper完全分布式部署
hadoop·分布式·zookeeper
houzhizhen1 天前
HiveMetastore 的架构简析
hive
数据要素X1 天前
【数据仓库】Hive 拉链表实践
大数据·数据库·数据仓库·人工智能·hive·hadoop·安全