Filebeat将csv导入es尝试

一、安装

在docker中安装部署ELK+filebeat

二、主要配置

|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - type: log ``# Change to true to enable this input configuration. ``enabled: true ``# Paths that should be crawled and fetched. Glob based paths. ``paths: ``- /home/centos/pip_v2.csv #源路径 ``#- c:\programdata\elasticsearch\logs\* ``#exclude_lines: ["^Restaurant Name,"] #第一行为字段头以"Restaurant Name"开头,不要第一行 ``multiline: ``pattern: ^\d{4} ``#pattern: ',\d+,[^\",]+$' ``negate: true ``match: after ``max_lines: 1000 ``timeout: 30s |

三、关于elastic的pipline

https://hacpai.com/article/1512990272091

我简单介绍主流程,详情见上链接

1.开启数据预处理,node.ingest: true

2.向es提交pipline,并命名为my-pipeline-id

PUT _ingest/pipeline/my-pipeline-id

{

"description" : "describe pipeline",

"processors" : [

{

"set" : {

"field": "foo",

"value": "bar"

}

}

]

}

3.以上pipline的作用

若产生新的数据,会新增一个字段为foo:bar

4.curl的pipline即时测试

POST _ingest/pipeline/_simulate

是一个测试接口,提供pipline的规则和测试数据,返回结果数据

四、关于grok

是pipline中的正则匹配模式,以上规则的复杂版

|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| POST _ingest/pipeline/_simulate { ``"pipeline": { ``"description": "grok processor", ``"processors" : [ ``{ ``"grok": { ``"field": "message", ``"patterns": ["%{IP:client} %{WORD:method} %{URIPATHPARAM:request} %{NUMBER:bytes} %{NUMBER:duration}"] ``} ``} ``] ``}, ``"docs": [ ``{ ``"_index": "index", ``"_type": "type", ``"_id": "id", ``"_source": { ``"message": "55.3.244.1 GET /index.html 15824 0.043" ``} ``} ``] } |

五、使用pipline导入csv

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| utput.elasticsearch: ``# Array of hosts to connect to. ``hosts: ["localhost:9200"] ``#index: "csvindex" ``pipline: "my-pipeline-id" ```# Protocol - eitherhttp(default) orhttps.`` ``#protocol: "https"` |

测试结果pipline配置后,并没生效。

六、结论

1.filebeat 导入csv的资料很少,主要为pipline方式,测试几个失败。

2.J和数据组并没有filebaeat 导入csv的成功案例。J不太建议使用

结论:filebeat导csv并不方便,建议采用logstash。

一般日志收集可使用logstash,每行的信息会存到message中

相关推荐
SEO_juper4 小时前
搜索引擎核心机制解析
搜索引擎·seo·数字营销·seo优化·谷歌seo
萤丰信息7 小时前
智慧工地从工具叠加到全要素重构的核心引擎
java·大数据·人工智能·重构·智慧城市·智慧工地
riveting7 小时前
明远智睿SSD2351:以技术突破重构嵌入式市场格局
大数据·人工智能·重构·边缘计算·嵌入式开发·智能交通
计算机源码社11 小时前
分享一个基于Hadoop+spark的超市销售数据分析与可视化系统,超市顾客消费行为分析系统的设计与实现
大数据·hadoop·数据分析·spark·计算机毕业设计源码·计算机毕设选题·大数据选题推荐
zskj_zhyl11 小时前
银发经济时代:科技赋能养老,温情守护晚年,让老人不再孤独无助
大数据·人工智能·科技·生活
Giser探索家11 小时前
低空智航平台技术架构深度解析:如何用AI +空域网格破解黑飞与安全管控难题
大数据·服务器·前端·数据库·人工智能·安全·架构
码界筑梦坊12 小时前
135-基于Spark的抖音数据分析热度预测系统
大数据·python·数据分析·spark·毕业设计·echarts
weixin_4432906913 小时前
【论文阅读-Part1】PIKE-RAG: sPecIalized KnowledgE and Rationale Augmented Generation
大数据·论文阅读
拓端研究室14 小时前
专题:2025抖音电商与微短剧行业研究报告|附150+份报告PDF汇总下载
大数据·人工智能
Qlittleboy15 小时前
tp5集成elasticsearch笔记
大数据·笔记·elasticsearch