Filebeat将csv导入es尝试

一、安装

在docker中安装部署ELK+filebeat

二、主要配置

|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - type: log ``# Change to true to enable this input configuration. ``enabled: true ``# Paths that should be crawled and fetched. Glob based paths. ``paths: ``- /home/centos/pip_v2.csv #源路径 ``#- c:\programdata\elasticsearch\logs\* ``#exclude_lines: ["^Restaurant Name,"] #第一行为字段头以"Restaurant Name"开头,不要第一行 ``multiline: ``pattern: ^\d{4} ``#pattern: ',\d+,[^\",]+$' ``negate: true ``match: after ``max_lines: 1000 ``timeout: 30s |

三、关于elastic的pipline

https://hacpai.com/article/1512990272091

我简单介绍主流程,详情见上链接

1.开启数据预处理,node.ingest: true

2.向es提交pipline,并命名为my-pipeline-id

PUT _ingest/pipeline/my-pipeline-id

{

"description" : "describe pipeline",

"processors" : [

{

"set" : {

"field": "foo",

"value": "bar"

}

}

]

}

3.以上pipline的作用

若产生新的数据,会新增一个字段为foo:bar

4.curl的pipline即时测试

POST _ingest/pipeline/_simulate

是一个测试接口,提供pipline的规则和测试数据,返回结果数据

四、关于grok

是pipline中的正则匹配模式,以上规则的复杂版

|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| POST _ingest/pipeline/_simulate { ``"pipeline": { ``"description": "grok processor", ``"processors" : [ ``{ ``"grok": { ``"field": "message", ``"patterns": ["%{IP:client} %{WORD:method} %{URIPATHPARAM:request} %{NUMBER:bytes} %{NUMBER:duration}"] ``} ``} ``] ``}, ``"docs": [ ``{ ``"_index": "index", ``"_type": "type", ``"_id": "id", ``"_source": { ``"message": "55.3.244.1 GET /index.html 15824 0.043" ``} ``} ``] } |

五、使用pipline导入csv

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| utput.elasticsearch: ``# Array of hosts to connect to. ``hosts: ["localhost:9200"] ``#index: "csvindex" ``pipline: "my-pipeline-id" ```# Protocol - eitherhttp(default) orhttps.`` ``#protocol: "https"` |

测试结果pipline配置后,并没生效。

六、结论

1.filebeat 导入csv的资料很少,主要为pipline方式,测试几个失败。

2.J和数据组并没有filebaeat 导入csv的成功案例。J不太建议使用

结论:filebeat导csv并不方便,建议采用logstash。

一般日志收集可使用logstash,每行的信息会存到message中

相关推荐
TDengine (老段)19 分钟前
TDengine 语言连接器(Node.js)
大数据·c语言·数据库·物联网·node.js·时序数据库·tdengine
chuangfumao1 小时前
解读《人工智能指数报告 2025》:洞察 AI 发展新态势
人工智能·搜索引擎·百度
极小狐2 小时前
极狐GitLab 功能标志详解
linux·运维·服务器·elasticsearch·gitlab·极狐gitlab
jinan8863 小时前
加密软件的发展:从古典密码到量子安全
大数据·运维·服务器·网络·安全·web安全
CC数学建模4 小时前
第十七届“华中杯”大学生数学建模挑战赛题目A题 晶硅片产销策略优化 完整成品 代码 模型 思路 分享
大数据
bulucc4 小时前
回归,git 分支开发操作命令
大数据·git·elasticsearch
计算机毕设定制辅导-无忧学长5 小时前
TDengine 存储引擎剖析:数据文件与索引设计(二)
大数据·时序数据库·tdengine
计算机毕设定制辅导-无忧学长5 小时前
TDengine 存储引擎剖析:数据文件与索引设计(一)
大数据·时序数据库·tdengine
ZStack开发者社区6 小时前
ZStack文档DevOps平台建设实践
java·大数据·开发语言·devops