python实现长链矩阵的高效乘法

对于矩阵乘法,是在各类工程实践中都会有着广泛应用的方法,但是矩阵乘法存在耗时耗力的缺点,两个相乘的矩阵C=A.B,如果A对应的列数是n,B所对应的行数是n,那么矩阵C中的一个元素的运算过程就是:

添加图片注释,不超过 140 字(可选)

矩阵C中i行j列所对应的元素等于矩阵A中的第i行的元素与矩阵B中的第j列的元素分别相乘后再相加的值,这也就可以得出矩阵C的单个元素的计算时间就为O(n),而C中会存在n^2个元素,这也就会导致算出矩阵C的时间复杂度是3次方级别,因此得出的结论就是矩阵乘法的运算时长非常长。

添加图片注释,不超过 140 字(可选)

从上图又可以得出如果在多个矩阵相乘的时候,如果相乘的过程中使用结合律,调整矩阵相乘的次序的话,那将会有可能大大提高多个矩阵相乘的效率。

所以这里就可以考虑使用动态规划来实现多个矩阵相乘的过程,以达到提高效率的目的。而上表中的第四种矩阵相乘的次序是效率最高的,要如何通过动态规划来得到这个次序,也就是矩阵不同的乘法次序可以通过二叉树来展现假设当前有4个矩阵相乘,可以用括号来制定不同的矩阵相乘的次序,可以用二叉树来表达者两种对应乘法次序,例如:

添加图片注释,不超过 140 字(可选)

上图所示的矩阵相乘时候对应于二叉树的叶子结点,两个叶子节点的父节点对应于两个矩阵乘积后的矩阵,二叉树的根节点就是多个矩阵相乘后的最终结果。

使用python实现查找最优矩阵乘积次序的代码实现如下:

复制代码
import sys
N = 4 #相乘的矩阵数
M = []
M.append((50, 20))  #构造5.2.1节对应的4个矩阵维度
M.append((20, 1))
M.append((1, 10))
M.append((10, 100))
arrange_map = {} #记录给定i和j对应的最优分割k
C = np.zeros((N, N)).astype(int)
for i in range(N):
    for j in range(N):
        C[i][j] = -1
def  compute_c_table(C, i, j):
    if i < 0 or i >= N:
        return
    if j < 0 or j >= N:
        return
    if i == j:
        C[i][j] = 0
    if C[i][j] != -1:  #当前元素已经计算过
        return C[i][j]
    cost = sys.maxsize 
    best_k = i
    for k in range(i, j):
        first_part_cost = compute_c_table(C, i, k)
        second_part_cost = compute_c_table(C, k + 1, j)
        if first_part_cost + second_part_cost + M[i][0]*M[k][1]*M[j][1] < cost:
            cost = first_part_cost + second_part_cost + M[i][0]*M[k][1]*M[j][1]
            best_k = k 
    C[i][j] = int(cost) 
    arrange_map[(i, j)] = best_k
    return C[i][j]
compute_c_table(C, 0, N-1)
print(C)
print("the best computation time is: ", C[0][N-1])
def  print_best_matrix_arrange(arrange_map, i, j):
    if i == j:
        return "A{0}".format(i)
    if j == i + 1:
        return "(A{0}*A{1})".format(i, j)
    k = arrange_map[(i, j)]  #得到矩阵Ai到Aj连乘时的最优分割
    left = print_best_matrix_arrange(arrange_map, i, k)
    right = print_best_matrix_arrange(arrange_map, k+1, j)
    return "({0}*{1})".format(left, right)
arrangement = print_best_matrix_arrange(arrange_map, 0, N-1)
print("the best arrangement is :", arrangement)
相关推荐
我命由我123451 小时前
35.Java线程池(线程池概述、线程池的架构、线程池的种类与创建、线程池的底层原理、线程池的工作流程、线程池的拒绝策略、自定义线程池)
java·服务器·开发语言·jvm·后端·架构·java-ee
&zzz1 小时前
Python生成exe
开发语言·python
Python×CATIA工业智造1 小时前
基于PySide6与pycatia的CATIA绘图比例智能调节工具开发全解析
python·pycharm·自动化·catia二次开发
Chandler241 小时前
Go:方法
开发语言·c++·golang
CopyLower2 小时前
分布式ID生成方案的深度解析与Java实现
java·开发语言·分布式
随便@_@3 小时前
基于MATLAB/simulink的信号调制仿真--AM调制
开发语言·matlab·simulink·移动仿真
爱代码的小黄人3 小时前
深入解析系统频率响应:通过MATLAB模拟积分器对信号的稳态响应
开发语言·算法·matlab
vsropy3 小时前
matlab安装python API 出现Invalid version: ‘R2022a‘,
开发语言·python
whoarethenext4 小时前
qt的基本使用
开发语言·c++·后端·qt
atec20004 小时前
使用uv管理python项目环境
开发语言·python·uv