python实现长链矩阵的高效乘法

对于矩阵乘法,是在各类工程实践中都会有着广泛应用的方法,但是矩阵乘法存在耗时耗力的缺点,两个相乘的矩阵C=A.B,如果A对应的列数是n,B所对应的行数是n,那么矩阵C中的一个元素的运算过程就是:

添加图片注释,不超过 140 字(可选)

矩阵C中i行j列所对应的元素等于矩阵A中的第i行的元素与矩阵B中的第j列的元素分别相乘后再相加的值,这也就可以得出矩阵C的单个元素的计算时间就为O(n),而C中会存在n^2个元素,这也就会导致算出矩阵C的时间复杂度是3次方级别,因此得出的结论就是矩阵乘法的运算时长非常长。

添加图片注释,不超过 140 字(可选)

从上图又可以得出如果在多个矩阵相乘的时候,如果相乘的过程中使用结合律,调整矩阵相乘的次序的话,那将会有可能大大提高多个矩阵相乘的效率。

所以这里就可以考虑使用动态规划来实现多个矩阵相乘的过程,以达到提高效率的目的。而上表中的第四种矩阵相乘的次序是效率最高的,要如何通过动态规划来得到这个次序,也就是矩阵不同的乘法次序可以通过二叉树来展现假设当前有4个矩阵相乘,可以用括号来制定不同的矩阵相乘的次序,可以用二叉树来表达者两种对应乘法次序,例如:

添加图片注释,不超过 140 字(可选)

上图所示的矩阵相乘时候对应于二叉树的叶子结点,两个叶子节点的父节点对应于两个矩阵乘积后的矩阵,二叉树的根节点就是多个矩阵相乘后的最终结果。

使用python实现查找最优矩阵乘积次序的代码实现如下:

复制代码
import sys
N = 4 #相乘的矩阵数
M = []
M.append((50, 20))  #构造5.2.1节对应的4个矩阵维度
M.append((20, 1))
M.append((1, 10))
M.append((10, 100))
arrange_map = {} #记录给定i和j对应的最优分割k
C = np.zeros((N, N)).astype(int)
for i in range(N):
    for j in range(N):
        C[i][j] = -1
def  compute_c_table(C, i, j):
    if i < 0 or i >= N:
        return
    if j < 0 or j >= N:
        return
    if i == j:
        C[i][j] = 0
    if C[i][j] != -1:  #当前元素已经计算过
        return C[i][j]
    cost = sys.maxsize 
    best_k = i
    for k in range(i, j):
        first_part_cost = compute_c_table(C, i, k)
        second_part_cost = compute_c_table(C, k + 1, j)
        if first_part_cost + second_part_cost + M[i][0]*M[k][1]*M[j][1] < cost:
            cost = first_part_cost + second_part_cost + M[i][0]*M[k][1]*M[j][1]
            best_k = k 
    C[i][j] = int(cost) 
    arrange_map[(i, j)] = best_k
    return C[i][j]
compute_c_table(C, 0, N-1)
print(C)
print("the best computation time is: ", C[0][N-1])
def  print_best_matrix_arrange(arrange_map, i, j):
    if i == j:
        return "A{0}".format(i)
    if j == i + 1:
        return "(A{0}*A{1})".format(i, j)
    k = arrange_map[(i, j)]  #得到矩阵Ai到Aj连乘时的最优分割
    left = print_best_matrix_arrange(arrange_map, i, k)
    right = print_best_matrix_arrange(arrange_map, k+1, j)
    return "({0}*{1})".format(left, right)
arrangement = print_best_matrix_arrange(arrange_map, 0, N-1)
print("the best arrangement is :", arrangement)
相关推荐
zzywxc78715 分钟前
详细探讨AI在金融、医疗、教育和制造业四大领域的具体落地案例,并通过代码、流程图、Prompt示例和图表等方式展示这些应用的实际效果。
开发语言·javascript·人工智能·深度学习·金融·prompt·流程图
关山21 分钟前
MCP实战
python·ai编程·mcp
浮灯Foden27 分钟前
算法-每日一题(DAY13)两数之和
开发语言·数据结构·c++·算法·leetcode·面试·散列表
悠哉悠哉愿意37 分钟前
【Python语法基础学习笔记】if语句
笔记·python·学习
淡海水41 分钟前
【原理】Struct 和 Class 辨析
开发语言·c++·c#·struct·class
Q_Q19632884751 小时前
python的电影院座位管理可视化数据分析系统
开发语言·spring boot·python·django·flask·node.js·php
BYSJMG1 小时前
计算机大数据毕业设计推荐:基于Hadoop+Spark的食物口味差异分析可视化系统【源码+文档+调试】
大数据·hadoop·分布式·python·spark·django·课程设计
杜子不疼.1 小时前
《Python学习之第三方库:开启无限可能》
开发语言·python·学习
青川入梦2 小时前
MyBatis极速通关上篇:Spring Boot环境搭建+用户管理实战
java·开发语言·mybatis
CC__xy2 小时前
04 类型别名type + 检测数据类型(typeof+instanceof) + 空安全+剩余和展开(运算符 ...)简单类型和复杂类型 + 模块化
开发语言·javascript·harmonyos·鸿蒙