(五)网络优化与超参数选择--九五小庞

网络容量

  • 网络中神经单元数越多,层数越多,神经网路的拟合能力越强。但是训练速度,难度越大,越容易产生过拟合。

如何选择超参数

  • 所谓超参数,也就是搭建神经网路中,需要我们自己去选择(不是通过梯度下降算法去优化)的哪些参数。比如,中间层的神经元个数,学习速率。

如何提高网络的拟合能力

增大网络容量

  • 增加层(深度)
    增加层会大大提高网络的拟合能力,这也是为什么现在深度学习的层越来越深的原因
  • 增加隐藏神经元个数(宽度)
    单纯的增加神经元个数对网络性能的提高并不明显
  • 注意:单层的神经元个数,不能太小,太小的话,会造成信息瓶颈,使得模型欠拟合
相关推荐
Exploring12 分钟前
从零搭建使用 Open-AutoGML 搜索附近的美食
android·人工智能
阿里云大数据AI技术26 分钟前
在 DataWorks 中一键部署大模型,即刻用于数据集成和数据开发
人工智能
AI科技星32 分钟前
质量定义方程常数k = 4π m_p的来源、推导与意义
服务器·数据结构·人工智能·科技·算法·机器学习·生活
机器之心1 小时前
OpenAI推出全新ChatGPT Images,奥特曼亮出腹肌搞宣传
人工智能·openai
机器之心1 小时前
SIGGRAPH Asia 2025:摩尔线程赢图形顶会3DGS挑战赛大奖,自研LiteGS全面开源
人工智能·openai
_Stellar1 小时前
从输入到输出:大语言模型一次完整推理简单解析
人工智能·语言模型·自然语言处理
【建模先锋】1 小时前
特征提取+概率神经网络 PNN 的轴承信号故障诊断模型
人工智能·深度学习·神经网络·信号处理·故障诊断·概率神经网络·特征提取
轲轲011 小时前
Week02 深度学习基本原理
人工智能·深度学习
老蒋新思维1 小时前
创客匠人:认知即资产 ——AI 时代创始人 IP 知识变现的底层逻辑
网络·人工智能·网络协议·tcp/ip·重构·创始人ip·创客匠人