(五)网络优化与超参数选择--九五小庞

网络容量

  • 网络中神经单元数越多,层数越多,神经网路的拟合能力越强。但是训练速度,难度越大,越容易产生过拟合。

如何选择超参数

  • 所谓超参数,也就是搭建神经网路中,需要我们自己去选择(不是通过梯度下降算法去优化)的哪些参数。比如,中间层的神经元个数,学习速率。

如何提高网络的拟合能力

增大网络容量

  • 增加层(深度)
    增加层会大大提高网络的拟合能力,这也是为什么现在深度学习的层越来越深的原因
  • 增加隐藏神经元个数(宽度)
    单纯的增加神经元个数对网络性能的提高并不明显
  • 注意:单层的神经元个数,不能太小,太小的话,会造成信息瓶颈,使得模型欠拟合
相关推荐
盲盒Q6 分钟前
《频率之光:归途之光》
人工智能·硬件架构·量子计算
墨染点香15 分钟前
第七章 Pytorch构建模型详解【构建CIFAR10模型结构】
人工智能·pytorch·python
go546315846515 分钟前
基于分组规则的Excel数据分组优化系统设计与实现
人工智能·学习·生成对抗网络·数学建模·语音识别
茫茫人海一粒沙21 分钟前
vLLM 的“投机取巧”:Speculative Decoding 如何加速大语言模型推理
人工智能·语言模型·自然语言处理
诗酒当趁年华23 分钟前
【NLP实践】二、自训练数据实现中文文本分类并提供RestfulAPI服务
人工智能·自然语言处理·分类
静心问道1 小时前
Idefics3:构建和更好地理解视觉-语言模型:洞察与未来方向
人工智能·多模态·ai技术应用
sheep88881 小时前
AI与区块链Web3技术融合:重塑数字经济的未来格局
人工智能·区块链
奋进的孤狼1 小时前
【Spring AI】阿里云DashScope灵积模型
人工智能·spring·阿里云·ai·云计算
AIGC_北苏1 小时前
让UV管理一切!!!
linux·人工智能·uv
吕永强3 小时前
人工智能与环境:守护地球的智能防线
人工智能·科普