AIGC 知识:机器学习中的“微调“和“迁移学习“有什么区别?

以下是关于**微调 (fine-tuning)迁移学习 (Transfer learning)**的区别,涉及到机器学习和深度学习的上下文:

  1. 迁移学习

    • 概述:迁移学习涉及使用预训练模型作为新任务或领域的起点。
    • 目标:利用预训练模型在大型数据集上获得的知识,并将其应用于具有较小数据集的相关任务。
    • 优势
      • 通过重用预训练模型学到的特征,节省时间和计算资源。
      • 对类似任务具有良好的泛化能力。
    • 步骤
      • 特征提取:将预训练模型用作固定的特征提取器。删除负责分类的最后几层,并替换为与任务相关的新层。只训练新添加层的权重。

      • 示例

        python 复制代码
        from tensorflow.keras.applications import VGG16
        from tensorflow.keras.layers import Dense, Flatten
        from tensorflow.keras.models import Model
        
        # 加载预训练的VGG16模型
        base_model = VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
        
        # 冻结预训练层的权重
        for layer in base_model.layers:
            layer.trainable = False
        
        # 添加新的分类层
        x = Flatten()(base_model.output)
        x = Dense(256, activation='relu')(x)
        output = Dense(num_classes, activation='softmax')(x)
        
        # 创建新模型
        model = Model(inputs=base_model.input, outputs=output)
        
        # 编译并在新数据集上训练模型
        model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
        model.fit(train_images, train_labels, epochs=10, validation_data=(val_images, val_labels))
  2. 微调

    • 概述:微调进一步扩展了迁移学习,允许更新预训练模型的层。
    • 过程
      • 解冻预训练模型的一些层。
      • 在新数据集上训练这些层,以适应并学习与新任务或领域相关的更具体特征。
    • 用例:当需要为特定任务专门定制预训练模型时,微调非常有用。
    • 示例
      • 特征提取后,解冻一些层并继续训练:

        python 复制代码
        # 解冻一些层以进行微调
        for layer in base_model.layers[-5:]:
            layer.trainable = True
        
        # 编译并继续训练
        model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
        model.fit(train_images, train_labels, epochs=5, validation_data=(val_images, val_labels))

总之,迁移学习利用现有知识,而微调通过更新模型的层进一步适应任务。这两种技术在深度学习中都是强大的工具! 🚀🤖

相关推荐
飞哥数智坊17 小时前
从CodeBuddy翻车到MasterGo救场,我的小程序UI终于焕然一新
人工智能
墨风如雪18 小时前
“小钢炮”驾到!VoxCPM:0.5B参数,震撼AI语音圈
aigc
AKAMAI19 小时前
跳过复杂环节:Akamai应用平台让Kubernetes生产就绪——现已正式发布
人工智能·云原生·云计算
新智元21 小时前
阿里王牌 Agent 横扫 SOTA,全栈开源力压 OpenAI!博士级难题一键搞定
人工智能·openai
新智元21 小时前
刚刚,OpenAI/Gemini 共斩 ICPC 2025 金牌!OpenAI 满分碾压横扫全场
人工智能·openai
机器之心21 小时前
OneSearch,揭开快手电商搜索「一步到位」的秘技
人工智能·openai
阿里云大数据AI技术21 小时前
2025云栖大会·大数据AI参会攻略请查收!
大数据·人工智能
YourKing1 天前
yolov11n.onnx格式模型转换与图像推理
人工智能
sans_1 天前
NCCL的用户缓冲区注册
人工智能
sans_1 天前
三种视角下的Symmetric Memory,下一代HPC内存模型
人工智能